Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(3\sqrt{3}-4\right)\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}}\)\(-\sqrt{\dfrac{\left(\sqrt{3}+4\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}}\)
\(=\sqrt{\dfrac{18-3\sqrt{3}-8\sqrt{3}+4}{\left(2\sqrt{3}\right)^2-1}}\)\(-\sqrt{\dfrac{5\sqrt{3}+6+20+8\sqrt{3}}{5^2-\left(2\sqrt{3}\right)^2}}\)
\(=\sqrt{\dfrac{22-11\sqrt{3}}{11}}\)\(-\sqrt{\dfrac{26+13\sqrt{3}}{13}}\)
\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}-\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)
2:
BC^2*MB
\(=\dfrac{BH^2}{BA}\cdot BC^2=\left(\dfrac{BA^2}{BC}\right)^2\cdot\dfrac{BC^2}{BA}\)
\(=\dfrac{BA^4}{BA}\cdot\dfrac{BC^2}{BC^2}=BA^3\)
=>\(MB=\dfrac{BA^3}{BC^2}\)
Ta có: \(x+y+z=1\)mà \(x,y,z\)không âm nên \(0\le x,y,z\le1\)
suy ra \(x^2\le x,y^2\le y,z^2\le z\)
\(S=\sqrt{3x^2 +1}+\sqrt{3y^2+1}+\sqrt{3z^2+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=x+y+z+3=4\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=1\\y=z=0\end{cases}}\)và các hoán vị.