Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=> \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)
=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.
b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)
=> Để giá trị phân thức A = 0 thì x = 3
Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé
a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)
b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)
\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) \(3x^2+4x-7\)
\(=3x^2-3x+7x-7\)
\(=3x\left(x-1\right)+7\left(x-1\right)\)
\(\left(x-1\right)\left(3x+7\right)\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Bài 2 :
a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)
\(A=\frac{-4x-7}{x+2}\)
c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )
\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)
M-tđ AE(E đx A qua M)
BC cắt AE tại M
=> ABEC là hình bình hành (dhnb)
b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
Bài 2:
Xét t.giác AKMH có
A=90*
H=90*(MHvg góc AC)
K=90*(MK vg góc AB)
=> AKMH là hình chữ nhật(dhnb)
b) AM là trung tuyến ứng vs cạnh huyền
=> AM=MC
=> tam giác AMC cân tại M
MH là đg cao
=> MH là trung tuyến
=> H - tđ AC
Xét t,giác AMCP có
H- tđ Ac( cmt)
H - tđ MP ( P đx M qua H)
AC cắt MP tại H
=> AMCP là hình bình hành (dhnb)
lại có AM=MC( cmt)
=> AMCP là hình thoi ( dhnb)
Bài 3:
Xét tam giác ABC vg tại A có
AB2 + AC2 = BC2
TS: 52 + 122= BC2
BC2= 25+144
=> BC= 13
Am là trung tuyến
=> AM=1/2BC
=> AM =7,5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)
Bài 1 :
\(Q=x^2-2x+114\)
\(Q=x^2-2\cdot x\cdot1+1^2+113\)
\(Q=\left(x-1\right)^2+113\ge113\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Qmin = 113 khi và chỉ khi x = 1
Bài 2:
a) \(x^2+4x-5x-20\)
\(=x\left(x+4\right)-5\left(x+4\right)\)
\(=\left(x+4\right)\left(x-5\right)\)
b) \(x^3+2x^2-9x-18\)
\(=x^2\left(x+2\right)-9\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-9\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)