Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/51+1/52+1/53+....+1/100>1/100+1/100+1/100+...+1/100(50 so 0)=50/100=1/2
47 x 98 + 94
= 47 x 98 + 47 x 2
= 47 x ( 98 + 2 )
= 47 x 100
= 4700
học tốt ^^
-2(2.x-8)+3(4-2.x)=-72-5(3.x-7)
<=>16-4x+12-6x =-72-15x+35
<=>16-4x+12-6x+72+15x-35=0
<=>65+5x=0
<=>x=-13
Nhớ tick cho mk hen😀
Gọi UCLN(2n + 3,3n + 4) là d
Ta có: 2n + 3 chia hết cho d => 3(2n + 3) chia hết cho d => 6n + 9 chia hết cho d
3n + 4 chia hết cho d => 2(3n + 4) chia hết cho d => 6n + 8 chia hết cho d
=> 6n + 9 - (6n + 8) chia hết cho d
=> 6n + 9 - 6n - 8 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(2n + 3,3n + 4) = 1
Gọi d là ƯCLN (2n + 3 ; 3n + 4)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
\(\Rightarrow6n+9-\left(6n+8\right)⋮d\)
\(6n+9-6n-8⋮d\)
\(1\) \(⋮d\)
\(\Rightarrow d=1\)
Vậy ƯCLN (2n + 3 ; 3n + 4) = 1
Ta có
P = a - {( a - 3 ) - [(a+3)-(-a-2)]}
= a - { a - 3 - [ a + 3 + a + 2 ] }
= a - { a - 3 - a - 5 }
= a - a + 3 + a + 5
= a + 8
Q = [ a + ( a + 30 ) ] - [ ( a + 2 ) ]
= [ 2a + 30 ] - a - 2
= a + 28
So sánh
Ta thấy 8 < 28 => a + 8 < a + 28
Nên P < Q
Vậy P < Q
n2 + n + 4 chia hết cho n + 1
=> n.n + n + 4 chia hết cho n + 1
=> n(n + 1) + 4 chia hết cho n + 1
Vì n(n + 1) chia hết cho n + 1 nên để n(n + 1) + 4 chia hết cho n + 1 thì 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4)
=> n + 1 thuộc {1;2;4}
Ta có bảng
n + 1 | 1 | 2 | 4 |
n | 0 | 1 | 3 |
Vậy n thuộc {0;1;3}
TL
Chọn C nha
HT
Câu C nha bn