K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

Kết quả trên sai.

Ta có: (x + 2y)2 = x2 + 2.x.2y + 4y2 = x2 + 4xy + 4y2 ≠ x2 + 2xy + 4y2.

Bài giải:

Nhận xét sự đúng, sai:

Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2

= x2 + 4xy + 4y2

Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.

1 tháng 10 2020

Bài giải:

Ta có:

(x+2y)2 = x2+2.x.2y+(2y)2

= x2+4xy+4y2

Vậy nên kết quả x2+2xy+4y2 =(x+2y)2 là sai

6 tháng 9 2017

Bài 1:
x2 + 2xy + 4y2 = ( x + 2y )2
\(\Rightarrow\)Đúng

Bài 2
( a + b )2 = ( a - b )2 + 4ab
Xét VP : ( a - b)2 - 4ab = a2 - 2ab + b2 + 4ab
= a2 + 2ab + b2 = ( a + b )2
= VT
\(\Rightarrow\)đpcm
( a - b)2 = ( a + b )2 - 4ab
Xét VP: a2 + 2ab + b2 -4ab
= a2 - 2ab + b2 = ( a - b)2
= VT
\(\Rightarrow\)đpcm
Áp dụng:
a) Ta có: ( a - b)2 = ( a + b)2 - 4ab
Thay a + b = 7 ; ab = 12
\(\Rightarrow\)72 - 4.12 = 49 - 48 = 1
b) Ta có : ( a + b )2 = ( a - b)2 + 4ab
Thay a - b = 20 ; ab = 3
\(\Rightarrow\) 202 + 4.3 = 400 + 12 = 412

Bài 3:
Ta có: 49x2 - 70x + 25
= ( 7x)2 - 2.7x.5 + 52
= (7x - 5 )2
a) Thay x = 5
\(\Rightarrow\) ( 7.5 - 5)2 = 302 = 900
b) Thay x = 7
\(\Rightarrow\)( 7 . \(\dfrac{1}{7}\)- 5 )2 = 16

6 tháng 9 2017

Bài 4: Tính
a) ( a + b + c )2
= [ ( a + b ) + c ] 2
= ( a+ b)2 + 2.( a + b).c + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2

b) ( a + b - c)2
= [ a + ( b - c)]2
= a2 + 2.a.( b - c) + ( b - c )2
= a2 + 2ab - 2ac + b2 - 2bc + c2

c) ( a - b - c)2
= [( a - b)-c ]2
= ( a- b)2 - 2. ( a - b ).c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2

22 tháng 11 2016

a)\(M=x^2-2xy+2y^2-4y+2016\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)

Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)

Vậy MinM=2012 khi x=y=2

b)\(N=x^2-2xy+2x+2y^2-4y+2016\)

\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)

Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)

Vậy MinN=2014 khi x=0;y=1

 

 

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1

1 tháng 8 2019

https://olm.vn/hoi-dap/detail/108858274535.html

Bài tương tự gưi link ib

13 tháng 10 2020

\(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\)

<=> \(\hept{\begin{cases}x^3+8y^3=0\left(1\right)\\x^3-8y^3=16\left(2\right)\end{cases}}\)

Lấy (1) + (2) theo vế

=> 2x3 = 16

=> x3 = 8 = 23

=> x = 2

Thế x = 2 vào (1)

=> 23 + 8y3 = 0

=> 8 + 8y3 = 0

=> 8y3 = -8

=> y3 = -1 = (-1)3

=> y = -1

Vậy \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

NV
4 tháng 10 2019

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+8y^3=0\\x^3-8y^3=16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^3=8\\y^3=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

30 tháng 7 2020

\(C=3.\left(x^2-8y^3-15\right)-3\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

\(=3x^2-24y^3-45-3\left[x\left(x^2+2xy+4y^2\right)-2y\left(x^2+2xy+4y^2\right)\right]\)

\(=3x^2-24y^3-45-3\left[\left(x^3+2x^2y+4xy^2\right)-\left(2x^2y+4xy^2+8y^3\right)\right]\)

\(=3x^2-24y^3-45-3\left(x^3+2x^2y+4xy^2-2x^2y-4xy^2-8y^3\right)\)

\(=3x^2-24y^3-45-3\left(x^3-8y^3\right)\)

\(=3x^2-24y^3-45-3x^3+24y^3\)

\(=3x^2-3x^3-45\)