\(\left(\frac{-13}{2}xy\right)\left(-x^2-xy-5\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-13/2xy.(-x^2-xy-5)=-13xy.(-x^2)+(-13/2).(-xy)+(-13/2).(-5)=13x^3y+13/2x^2y^265/2xy

7 tháng 9 2021

`( (-13)/2xy) (-x^2 - xy - 5)`

`= (-13)/2 xy . (-x)^2 +(-13)/2xy . (-xy) + (-13)/2xy . (-5)`

`= 13/2 x^3y + 13/x^2y^2 + 65/2 xy`

2 tháng 9 2019

 TL:

\(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)

\(=x^3-y^3\)

2 tháng 9 2019

     \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

17 tháng 12 2019

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)

\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

31 tháng 8 2017

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)

b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)

c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)

d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)

e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)

f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)

i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

30 tháng 8 2017

A),(-2)5:(-2)3=(-2)2=4

B) (-y)7 :(-y)3=y4

12 tháng 10 2019

\(y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)

\(=\left(xy-y^2+xy\right)\left(x-y\right)\)

\(=\left(2xy-y^2\right)\left(x-y\right)\)

12 tháng 10 2019

y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]

= (x-y) ( 2xy -y2)

2 tháng 10 2016

Phân tích thành nhân tử

\(=\left(my+nx\right)\left(ny+mx\right)\)

2 tháng 10 2016

mn(x+y2) +xy(m2 +n2)= mnx+mny+xym2 +xyn2

                                              =mx(nx + my) +ny( my +nx)

                                  =(mx+ny)(nx+my)

9 tháng 10 2019

Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b

=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b

Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2

= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2

=(x^2+y^2+z^2 +xy+yz+zx)^2

26 tháng 9 2019

\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\)

\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)

\(\Rightarrow a+2b=\left(x+y+z\right)^2\)

Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)

                                      \(=a^2+2ab+b^2\)

                                     \(=\left(a+b\right)^2\)

                                      \(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x)