K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Điều kiện: x ≥ 0; x ≠ 7; y ≥ 0

Đặt 1 x − 7 = a ; 1 y + 6 = b ta được  7 a − 4 b = 5 3 5 a + 3 b = 2 1 6 ⇔ 21 a − 12 b = 5 20 a + 12 b = 26 3

21 a − 12 b = 5 41 a = 41 3 ⇔ a = 1 3 21. 1 3 − 12 b = 5 ⇔ a = 1 3 b = 1 6

Trả lại biến ta có

1 x − 7 = 1 3 1 y + 6 = 1 6 ⇔ x − 7 = 3 y + 6 = 6 ⇔ x = 100 y = 0 T M

Vậy hệ phương trình có nghiệm (x; y) = (100; 0)

Đáp án: D

10 tháng 5 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x>7\\y>-6\end{matrix}\right.\)

- Đặt \(\frac{1}{\sqrt{x-7}}=a,\frac{1}{\sqrt{y+6}}=b\) ( \(a,b\ne0\) ) vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{matrix}\right.\)

( đoạn này ruễ tự giải nhoa )

=> \(\left\{{}\begin{matrix}a=\frac{1}{3}\\b=\frac{1}{6}\end{matrix}\right.\)( TM )

- Thay lại \(\frac{1}{\sqrt{x-7}}=a,\frac{1}{\sqrt{y+6}}=b\) vào hệ phương trình ta được :

\(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-7=9\\y+6=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=16\\y=30\end{matrix}\right.\) ( TM )

Vậy .........

10 tháng 5 2020

THẠNKS

3 tháng 2 2016

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

3 tháng 2 2016

moi hok lop 6 thoi

2 tháng 2 2016

em moi hoc lop 6 thoi sao lam duoc toan lop 9

2 tháng 2 2016

Grade 5 students only know how to do

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

12 tháng 10 2021

\(\left\{{}\begin{matrix}\left(x-5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-2x-5y+10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=12\\3x-y=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+21y=36\\3x-y=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}22y=20\\x+7y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{62}{11}\\y=\dfrac{10}{11}\end{matrix}\right.\)

27 tháng 3 2020

\(\hept{\begin{cases}\frac{x+4}{x+3}-\frac{2}{y-1}=10\\\frac{x+6}{x+3}+\frac{1}{y-1}=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x+4}{x+3}-\frac{2}{y-1}=10\\\frac{2x+12}{x+3}+\frac{2}{y-1}=14\end{cases}}\)

\(\Leftrightarrow\left(\frac{x+4}{x+3}-\frac{2}{y-1}\right)+\left(\frac{2x+12}{x+3}+\frac{2}{y-1}\right)=24\)

\(\Leftrightarrow\frac{x+4}{x+3}+\frac{2x+12}{x+3}=24\)

\(\Leftrightarrow\frac{x+4+2x+12}{x+3}=24\)

\(\Leftrightarrow\frac{3x+16}{x+3}=24\)

\(\Leftrightarrow3x+16=24x+62\)

\(\Leftrightarrow21x+46=0\)

\(\Rightarrow x=\frac{-46}{21}\)

Okey,giờ tìm y đơn giản rồi nhen :D

20 tháng 4 2020

đến đoạn khử thì bạn có thể đặt 1 vế ở dưới để tiện lm luôn cg đc :))