K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

ĐK: x > 0

\(0< x< 1\Leftrightarrow\log_2x< 0\)

Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)

YCBT ↔ pt (1) có hai nghiệm âm phân biệt

\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)

 

AH
Akai Haruma
Giáo viên
27 tháng 12 2017

Lời giải:

Ta có công thức \(a^{\ln b}=b^{\ln a}\)

Thay \(a=3; b=2\Rightarrow 3^{\ln 2}=2^{\ln 3}\)

\(\Leftrightarrow 3=2^{\frac{\ln 3}{\ln 2}}\)

Do đó: \(3^x.2^{x^2}=1\)

\(\Leftrightarrow 2^{x.\frac{\ln 3}{\ln 2}}.2^{x^2}=1\)

\(\Leftrightarrow 2^{x^2+x.\frac{\ln 3}{\ln 2}}=1\)

\(\Leftrightarrow x^2+x.\frac{\ln 3}{\ln 2}=0\)

\(\Leftrightarrow x(x+\frac{\ln 3}{\ln 2})=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{\ln3}{\ln2}=-\log_23\end{matrix}\right.\)

Vậy \(x\in \left\{0; -\log_23\right\}\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(2^x=t(t>0)\Rightarrow t^2-2mt+2m=0\)

Theo định lý Viete, nếu pt có hai nghiệm $t_1,t_2$ thì: \(t_1t_2=2m\Leftrightarrow 2^{x_1}2^{x_2}=2m\)

\(\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 2^{3}=2m\Leftrightarrow m=4\)

Thử lại thấy đúng

Đáp án B.

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Đặt \(\left\{\begin{matrix} 1-x^2=a\\ 6-5x=b\end{matrix}\right.\)

PT trở thành:

\(2^{1+b-a}+2^a=2^b\)

\(\Leftrightarrow 2^a(2^{1+b-2a}+1-2^{b-a})=0\)

\(\Leftrightarrow 2^{1+b-2a}-2^{b-a}=-1< 0\)

\(\Leftrightarrow 2^{1+b-2a}< 2^{b-a}\)

\(\Leftrightarrow 1+b-2a< b-a\Leftrightarrow 1-a< 0\Leftrightarrow 1< a\)

\(\Leftrightarrow 1-x^2> 1\Leftrightarrow x^2< 0\) (vô lý)

Do đó PT vô nghiệm.

NV
2 tháng 5 2019

Bài 1:

\(y'=3\left(x+m\right)^2+3\left(x+n\right)^2-3x^2\)

\(y'=3\left(x^2+2mx+m^2\right)+3\left(x^2+2nx+n^2\right)-3x^2\)

\(y'=3\left(x^2+2\left(m+n\right)x+m^2+n^2\right)\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Rightarrow\Delta'=\left(m+n\right)^2-\left(m^2+n^2\right)\le0\) \(\Rightarrow mn\le0\)

\(P=4\left(m+n\right)^2-\left(m+n\right)-8mn\ge4\left(m+n\right)^2-\left(m+n\right)\ge-\frac{1}{16}\)

Bài 2: Đề bài rất kì quặc

Mình nghĩ cách giải sẽ như sau: nhận thấy \(z=0\) ko phải nghiệm nên chia 2 vế cho \(z^3\):

\(z^3+2016z^2+2017z+2018+\frac{2017}{z}+\frac{2016}{z^2}+\frac{1}{z^3}=0\)

\(\Leftrightarrow z^3+\frac{1}{z^3}+2016\left(z^2+\frac{1}{z^2}\right)+2017\left(z+\frac{1}{z}\right)+2018=0\)

Đặt \(z+\frac{1}{z}=a\Rightarrow\left\{{}\begin{matrix}a^2=z^2+\frac{1}{z^2}+2\Rightarrow z^2+\frac{1}{z^2}=a^2-2\\a^3=z^3+\frac{1}{z^3}+3\left(z+\frac{1}{z}\right)\Rightarrow z^3+\frac{1}{z^3}=a^3-3a\end{matrix}\right.\)

\(\Rightarrow a^3-3a+2016\left(a^2-2\right)+2017a+2018=0\)

\(\Leftrightarrow a^3+2016a^2+2014a-2014=0\)

Đặt \(f\left(a\right)=a^3+2016a^2+2014a-2014\)

\(f\left(-2015\right)=1\) ; \(f\left(-2016\right)=...< 0\)

\(\Rightarrow f\left(-2015\right).f\left(-2016\right)< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm \(a_0\in\left(-2016;-2015\right)\)

Khi đó ta có: \(z+\frac{1}{z}=a_0\Rightarrow z^2-a_0z+1=0\)

\(\Delta=a_0^2-4>0\) do \(a_0\in\left(-2016;-2015\right)\) nên \(a_0^2>2015^2>4\)

\(\Rightarrow\) Phương trình đã cho có ít nhất 2 nghiệm thực nên ko thể có 6 nghiệm phức

\(\Rightarrow\) Đề bài sai :(

3 tháng 5 2019

Bài 2 mình dùng phương trình đối xứng ra được ko bạn ??