Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp

Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}-2+\sqrt{3}=VP\)
Bài 1.
Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)
\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)
\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2

Lời giải:
a) ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$
b) ĐKXĐ: $3+2x>0\Leftrightarrow x>\frac{-3}{2}$
c) ĐKXĐ: $x^2-4\geq 0\Leftrightarrow (x-2)(x+2)\geq 0$
$\Leftrightarrow x\geq 2$ hoặc $x\leq -2$
d)
ĐKXĐ\(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}\neq 2\\ x+1>0\\ x\neq 0\\ \sqrt{x}\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\neq 4\\ x\neq 9\end{matrix}\right.\)
e)
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ 7-\sqrt{x}>0\end{matrix}\right.\Leftrightarrow 0\leq x< 49\)
f)
\(\left\{\begin{matrix} 5-x\neq 0\\ \frac{x+3}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x+3\geq 0\\ 5-x>0\end{matrix}\right.\\ \left\{\begin{matrix} x+3\leq 0\\ 5-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow -3\leq x< 5\)

Bài 2:
a: ĐKXĐ: 2/3x-1/5>=0
=>2/3x>=1/5
hay x>=3/10
b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)
=>2x-3>0 hoặc x+1<=0
=>x>3/2 hoặc x<=-1
c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)

\(\left(x+2\right)\left(5-2x\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2\ge0\\5-2x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2\le0\\5-2x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2\\x\le\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2\\x\ge\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\) (Loại TH2) \(\Leftrightarrow\dfrac{5}{2}\ge x\ge-2\)
\(d.\sqrt{\dfrac{2x+3}{7-x}-1}\)
\(\dfrac{2x+3}{7-x}-1\ge0\)
\(\Leftrightarrow\dfrac{2x+3-7+x}{7-x}\ge0\)
\(\Leftrightarrow\dfrac{3x-4}{7-x}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-4\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-4\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{4}{3}\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{4}{3}\\x>7\end{matrix}\right.\end{matrix}\right.\) (loại TH2)
\(\Leftrightarrow7>x\ge\dfrac{4}{3}\)

TL:
\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)
BT thỏa mãn \(\forall x\)
a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)
Vậy biểu thức có nghĩa với mọi x
b) \(\sqrt{\frac{-3}{2+x}}\)
Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)

a) để \(y=\dfrac{x+3}{4-x}\) có nghĩa \(\Leftrightarrow4-x\ne0\Leftrightarrow x\ne4\)
b) để \(y=\dfrac{x-3}{\left(x-1\right)\left(3+2x\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\3+2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{-3}{2}\end{matrix}\right.\)
c) để \(y=\sqrt{2x+1}\) có nghĩa \(\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge\dfrac{-1}{2}\)
d) để \(y=\sqrt{x-3}+\sqrt{7-x}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\Rightarrow3\le x\le7\)
e) để \(y=\sqrt{x^2+2x+4}\) có nghĩa \(\Leftrightarrow x^2+2x+4\ge0\)
mà : \(x^2+2x+4=\left(x+1\right)^2+3\ge3>0\forall x\) \(\Rightarrow x\in R\)
g) để \(\dfrac{5}{\sqrt{x+1}}\) có nghĩa \(\Leftrightarrow x+1>0\Leftrightarrow x>-1\)
\(\dfrac{\left|x-2\right|}{\sqrt{x-1}}=\dfrac{x-2}{\sqrt{x-1}}\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1>0\end{matrix}\right.\)
\(\Rightarrow x\ge2\)
\(S=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)