Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- x-y-xy=3 =>xy=x-y-3(1)
- x^2+xy+y^2=1=>(x+y)^2-xy=1
=>(x+y)^2-x+y+3=1
kết hợp với (1) giải ra
Mk nghĩ đề bài nên cho x ;y là số nguyên
Ta có:\(x^2y+xy^2+x+y+xy=11\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)
Từ đây => \(\inƯ\left(12\right)\)
Làm nốt
x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11
xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m
đặt a = x(x+2); b = y(y +2)
Khi đó ta có hệ phương trình: a + b = 11; ab = m
Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0 (*)
a) khi m = 24 .
(*) <=> t2 - 11t + 24 = 0 <=> t2 - 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8
=> a = 8 ; b = 3 hoặc a = 3; b = 8
+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4
b = 3 => y(y +2) = 3 <=> y2 + 2y - 3 = 0 <=> (y +1)2 = 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3
tương tự, a = 3; b = 8
Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)
b) Vì a = x(x+2) => x2 + 2x = a <=> (x+1)2 = a+ 1; b = y(y + 2) => (y +1)2 = b + 1
=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1
Để hệ có nghiệm <=> (*) có 2 nghiệm t1; t2 \(\ge\) -1
<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1
+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m
+) t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0
<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0
Theo hệ thức Vi ét ta có : t1 + t2 = 11/2 = 5,5; t1.t2 = m
Suy ra (t1 + 1) + (t2 + 1) =7,5 \(\ge\) 0 (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t1 + t2) + 1 = m + 5,5 + 1 = m + 6,5 \(\ge\) 0 => m \(\ge\) - 6 ,5
Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
x = 2 và y = 3 (cái này mình tính nhẩm thôi, còn cách làm thì mình không biết, vì mới học lớp 7)