K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016
  1. x-y-xy=3 =>xy=x-y-3(1)
  2. x^2+xy+y^2=1=>(x+y)^2-xy=1

=>(x+y)^2-x+y+3=1

kết hợp với (1) giải ra

20 tháng 3 2016

kết quả là X=1 và Y=-1

1 tháng 9 2019

 Mk nghĩ đề bài nên cho x ;y là số nguyên

Ta có:\(x^2y+xy^2+x+y+xy=11\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)

Từ đây => \(\inƯ\left(12\right)\)

Làm nốt

12 tháng 9 2015

x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11

xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m

đặt a = x(x+2); b = y(y +2)

Khi đó ta có hệ phương trình: a + b = 11; ab = m

Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0   (*)

a) khi m = 24 .

(*) <=> t2 - 11t + 24 = 0 <=> t- 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8

=> a = 8 ; b = 3 hoặc a = 3; b = 8

+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4

b = 3 => y(y +2) = 3 <=> y+ 2y - 3 = 0 <=> (y +1)= 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3

tương tự, a = 3; b = 8

Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)

b)  Vì a = x(x+2) => x2 + 2x = a <=> (x+1)= a+ 1; b = y(y + 2) => (y +1)2  = b + 1

=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1

Để hệ có nghiệm <=>  (*) có 2  nghiệm t1; t2   \(\ge\) -1 

<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1

+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m

+)  t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0 

<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0

Theo hệ thức Vi ét ta có : t1 + t = 11/2 = 5,5; t1.t2 = m 

Suy ra (t1 + 1) + (t2 + 1)  =7,5  \(\ge\) 0  (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t+ t2) + 1 = m + 5,5 + 1 = m + 6,5  \(\ge\) 0 => m \(\ge\) - 6 ,5 

Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25 

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)Giá trị nhỏ nhất của biểu thức A bằng  ........Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........Câu 5: Nghiệm của phương...
Đọc tiếp

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......

Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......

Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)
Giá trị nhỏ nhất của biểu thức A bằng  ........

Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.
Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........

Câu 5: Nghiệm của phương trình\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)là x = .............

Câu 6: Đa thức dư trong phép chia đa thức x + x3 + x9 + x27 + x81 + x243 cho đa thức (x2 - 1) là ax + b.
Khi đó a + b = .......

Câu 7: Cho x, y thuộc N* thỏa mãn x + y = 11.
Giá trị lớn nhất của biểu thức A = xy là:

Câu 8: Số giá trị của a để hệ xy+x+y=a+1 và x2y+ y2x có nghiệm duy nhất là:

Câu 9: Viết số 19951995 dưới dạng 19951995 = a+ a+ a+ ...... + an.
Khi đó a12 + a22 + a32 + ...... + anchia cho 6 thì có số dư là ............

0
5 tháng 9 2020

Ta có:

x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)

⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1

⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)

Đặt (x2+1;x+1)=d(x2+1;x+1)=d

⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d

⟹2⋮d⟹2⋮d

Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1

⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2

Từ đây dễ dàng suy ra x=0x=0

⟹y=0;y=−1⟹y=0;y=−1

Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)