Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-4\le x\le6\)
Do \(\sqrt{\left(x+4\right)\left(6-x\right)}\ge0\Rightarrow2\left(x+1\right)\ge0\Rightarrow x\ge-1\)
Khi đó, bình phương 2 vế ta được:
\(\left(x+4\right)\left(6-x\right)\le4\left(x+1\right)^2\)
\(\Rightarrow-x^2+2x+24\le4x^2+8x+4\)
\(\Rightarrow5x^2+6x-20\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-3-\sqrt{109}}{5}\\x\ge\frac{-3+\sqrt{109}}{5}\end{matrix}\right.\)
Kết hợp điều kiện \(-4\le x\le6\) và \(-1\le x\) ta được: \(\frac{-3+\sqrt{109}}{5}\le x\le6\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\) \(\Rightarrow2a+3b=21\)
\(\Leftrightarrow\frac{\left|x+2\right|-x}{x}-2\le0\Leftrightarrow\frac{\left|x+2\right|-3x}{x}\le0\)
- Với \(x\ge-2\)
\(\Leftrightarrow\frac{x+2-3x}{x}\le0\Leftrightarrow\frac{2\left(1-x\right)}{x}\le0\Rightarrow\left[{}\begin{matrix}x< 0\\x\ge1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-2\le x< 0\\x\ge1\end{matrix}\right.\)
- Với \(x< -2\)
\(\Leftrightarrow\frac{-x-2-3x}{x}\le0\Leftrightarrow\frac{-2\left(1+2x\right)}{x}\le0\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x>0\end{matrix}\right.\) \(\Rightarrow x< -2\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}x< 0\\x\ge1\end{matrix}\right.\)
1 ) \(|\) x+2 \(|\) - \(|\) x-1 \(|\) < x - 3/2
TH1 : x < -2
bpt <=> -x - 2 - ( -x + 1) < x - 3/2
<=> x > -3/2 ( k tm )
TH 2 : -2 \(\le\) x < 1
bpt <=> x + 2 - ( -x+1) < x - 3/2
<=> x < -5/2 (k tm )
TH3 : x \(\ge\) 1
bpt <=> x + 2 - ( x - 1 ) < x - 3/2
<=> x > 9/2 tm
Vậy x > 9/2 .
2 ) x(x - 1)2 \(\ge\) 4 - x
<=> x( x2 - 2x +1 + 1 ) \(\ge\) 4
<=> x3 - 2x2 + 2x - 4 \(\ge\) 0
<=> x2 (x - 2) + 2(x - 2) \(\ge\) 0
<=> (x2 + 2)(x - 2) \(\ge\) 0
Có : x2 + 2 > 0 , với mọi x
=> x - 2 \(\ge\) 0 <=> x \(\ge\) 2 .
Xem thử đúng hay sai ...
Hoàng Thị Ánh Phương , Ribi Nkok Ngok, Nguyễn Lê Phước Thịnh, Trần Quốc Khanh, Vũ Minh Tuấn, ?Amanda?, Nguyễn Ngọc Lộc , Trên con đường thành công không có dấu chân của kẻ lười biếng, Bùi Lan Anh , Akai Haruma, @Nguyễn Việt Lâm, ...
a) <=>
Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).
b) <=>
Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).
1.
\(\left\{{}\begin{matrix}x>2\\\frac{5}{2}+3\le x+\frac{3}{2}x\\2x\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>2\\\frac{5}{2}x\ge\frac{11}{2}\\x\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\frac{11}{5}\le x\le\frac{5}{2}\)
\(\Rightarrow a+b=\frac{11}{5}+\frac{5}{2}=D\)
2.
\(\left\{{}\begin{matrix}6x-4x>7-\frac{5}{7}\\4x-2x< 25-\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{22}{7}\\x< \frac{47}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{22}{7}< x< \frac{47}{4}\Rightarrow x=\left\{4;5...;11\right\}\) có 8 giá trị
3.
\(\left\{{}\begin{matrix}5x-4x< 5+2\\x^2< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-1\end{matrix}\right.\)
\(\Rightarrow-1< x< 7\Rightarrow x=\left\{0;1;...;6\right\}\)
\(\Rightarrow\sum x=1+2+...+6=21\)
4.
\(\left\{{}\begin{matrix}x^2-2x+1\le8-4x+x^2\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\le7\\x\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le x\le\frac{7}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x_{min}=-1\\x_{max}=3\end{matrix}\right.\) \(\Rightarrow S=2\)
5.
\(\left\{{}\begin{matrix}x>\frac{1}{2}\\x< m+2\end{matrix}\right.\)
Hệ đã cho có nghiệm khi và chỉ khi:
\(m+2>\frac{1}{2}\Rightarrow m>-\frac{3}{2}\)
Thay \(x=-3\) vào bất phương trình (1) ta được:
\(3.\left(-3\right)+1< -3+3\)\(\Leftrightarrow-8< 0\) ( đúng)
Vậy \(x=-3\) là nghiệm của bất phương trình (1)
TThay \(x=-3\) vào bất phương trình (2) ta được:
\(\left(3.\left(-3\right)+1\right)^2< \left(-3+3\right)^2\)\(\Leftrightarrow64< 0\) (vô lý).
Vậy \(x=-3\) là nghiệm của bất phương trình (2).
Vậy hai bất phương trình (1) và (2) không tương đương và bình phương hai vế của bất phương trình không là phép biến đổi tương đương.