Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+5x+1=(x+5)\(\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+5x+1=\left(x+5\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+5x+1=x^2+x+5x+5\)
<=> -x=4
<=> x=-4
Dặt tử = A
A^2 = \(x+\sqrt{x^2-y^2}+x-\sqrt{x^2-y^2}-2\sqrt{x^2-x^2+y^2}\)
= \(2x-2\sqrt{y^2}=2x-2y=2\left(x-y\right)\)
=> A = \(\sqrt{2\left(x-y\right)}\)
Lấy tử chia mẫu là xong
x2-(m+4).x+4m=0
1) Khi m=-1
=> x2-3x-4=0
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Xét \(\Delta=\left(m+4\right)^2-4.4m=m^2-8m+16=\left(m-4\right)^2>0\)
\(\Rightarrow x\ne4\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=m+4\\x_1x_2=4m\end{cases}}\)
do đó
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+x_2\left(x_1+x_2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow m^2+8m+16-4m=16\)
\(\Leftrightarrow m^2+4m=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)
B=\(\frac{3\sqrt{x}}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)-3}{\sqrt{x}+1}=3-\frac{3}{\sqrt{x}+1}\)
Do B nguyên nên \(\sqrt{x}+1\inƯ\left(3\right)=\left\{1;3\right\}\)
.\(\sqrt{x}+1=1\Rightarrow x=0\left(loại\right)\)
. \(\sqrt{x}+1=3\Rightarrow x=4\left(nhận\right)\)
Vậy x=4
cau hoi lop 9 thi sao toi tra loi duoc toi moi hoc lop 6 thoi ma
67+1=66
54+1=55
67 + 1= 66
54 + 1= 55