K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

\(x+y+z=\frac{\pi}{2}\Rightarrow x+y=\frac{\pi}{2}-z\)

\(\Rightarrow tan\left(x+y\right)=tan\left(\frac{\pi}{2}-z\right)=cotz\)

\(\Rightarrow\frac{tanx+tany}{1-tanx.tany}=cotz\)

\(cotx+coty=2cotz\Rightarrow cotx+coty=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\)

\(\Rightarrow\frac{1}{tanx}+\frac{1}{tany}=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\Leftrightarrow\frac{tanx+tany}{tanx.tany}=\frac{2\left(tanx+tany\right)}{1-tanx.tany}\)

\(\Rightarrow\frac{1}{tanx.tany}=\frac{2}{1-tanx.tany}\Leftrightarrow1-tanx.tany=2tanx.tany\)

\(\Rightarrow tanx.tany=\frac{1}{3}\Rightarrow cotx.coty=3\)

19 tháng 6 2020

Tks !

6 tháng 11 2019

a, \(\left(1-sin^2x\right)cot^2x+1-cot^2x\)

\(=cot^2x-sin^2x.cot^2x+1-cot^2x\)

\(=1-sin^2x.\frac{\text{cos}^2x}{sin^2x}=1-\text{cos}^2x=sin^2x\)

b,\(\left(tanx+cotx\right)^2-\left(tanx-cotx\right)2\)

\(=tan^2x2.tanx.cotx+cot^2x-tan^2x+2tanx.cotx-cot^2x\)

\(=4tanxcotx=4\)

c,\(\left(xsina-y\text{cos}a\right)^2+\left(x\text{cos}a+ysina\right)^2\)

\(=x^2sin^2a=2xysina\text{cos}a+y^2\text{cos}^2a+2xysina\text{cos}a+y^2sin^2a\)

\(=x^2\left(sin^2a+\text{cos}^2a\right)+y^2\left(sin^2a+\text{cos}^2a\right)\)

\(=x^2+y^2\)

NV
19 tháng 6 2020

Đúng như bạn viết vế trái là thế này:

\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)

\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)

Còn vế phải sẽ ra thế này:

\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)

Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)

NV
4 tháng 3 2021

\(tana-cota=2\sqrt{3}\Rightarrow\left(tana-cota\right)^2=12\)

\(\Rightarrow\left(tana+cota\right)^2-4=12\Rightarrow\left(tana+cota\right)^2=16\)

\(\Rightarrow P=4\)

\(sinx+cosx=\dfrac{1}{5}\Rightarrow\left(sinx+cosx\right)^2=\dfrac{1}{25}\)

\(\Rightarrow1+2sinx.cosx=\dfrac{1}{25}\Rightarrow sinx.cosx=-\dfrac{12}{25}\)

\(P=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=\dfrac{sin^2x+cos^2x}{sinx.cosx}=\dfrac{1}{sinx.cosx}=\dfrac{1}{-\dfrac{12}{25}}=-\dfrac{25}{12}\)

-4 ở đâu ra vậy ạ

 

16 tháng 7 2019

ĐKXĐ:...

\(VT=\frac{\frac{\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)}-\frac{\cos^2\left(\frac{3x}{2}\right)}{\sin^2\left(\frac{3x}{2}\right)}}{\cos^2\left(\frac{x}{2}\right).\cos x.\frac{1}{\sin^2\left(\frac{3x}{2}\right)}}\) \(=\frac{\sin^2\left(\frac{3x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x}-\frac{\cos^2\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{x}{2}\right).\cos x}\)

\(=\frac{\sin^2\left(\frac{3x}{2}\right).\cos^2\left(\frac{x}{2}\right)-\cos^2\left(\frac{3x}{2}\right).\sin^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\) \(=\frac{\left(\sin\left(\frac{3x}{2}\right).\cos\left(\frac{x}{2}\right)-\cos\left(\frac{3x}{2}\right).\sin\left(\frac{x}{2}\right)\right).\left(\sin\left(\frac{3x}{2}\right).\cos\left(\frac{x}{2}\right)+\cos\left(\frac{3x}{2}\right).\sin\left(\frac{x}{2}\right)\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\)

\(=\frac{\sin\left(\frac{3x}{2}-\frac{x}{2}\right).\sin\left(\frac{3x}{2}+\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}=\frac{\sin x.\sin2x}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}\)

\(=\frac{2.\sin^2x.\cos x}{\sin^2\left(\frac{x}{2}\right).\cos x.\cos^2\left(\frac{x}{2}\right)}=\frac{8.\sin^2\left(\frac{x}{2}\right).\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right).\cos^2\left(\frac{x}{2}\right)}=8\left(đpcm\right)\)

NV
3 tháng 6 2020

\(\frac{sinA}{cosA}+\frac{sinB}{cosB}=\frac{2cos\frac{C}{2}}{sin\frac{C}{2}}\Leftrightarrow\frac{sinA.cosB+cosA.sinB}{cosA.cosB}=\frac{2sin\frac{C}{2}.cos\frac{C}{2}}{sin^2\frac{C}{2}}\)

\(\Leftrightarrow\frac{sin\left(A+B\right)}{cosA.cosB}=\frac{2sinC}{1-cosC}\Leftrightarrow\frac{sinC}{cosA.cosB}=\frac{2sinC}{1-cosC}\)

\(\Leftrightarrow1-cosC=2cosA.cosB=cos\left(A+B\right)+cos\left(A-B\right)\)

\(\Leftrightarrow1-cosC=-cosC+cos\left(A-B\right)\)

\(\Leftrightarrow cos\left(A-B\right)=1\Rightarrow A-B=0\Rightarrow A=B\)

\(\Rightarrow\) Tam giác ABC cân tại C

\(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)

\(\Leftrightarrow2cos^2A+2cos^2B=\left(sin^2A+sin^2B\right)\left(cot^2A+cot^2B\right)\)

\(\Leftrightarrow2cos^2A+2cos^2B=cos^2A+cos^2B+sin^2A.cot^2B+sin^2B.cot^2A\)

\(\Leftrightarrow cos^2A+cos^2B=\frac{sin^2A.cos^2B}{sin^2B}+\frac{sin^2B.cos^2A}{sin^2A}\)

\(\Leftrightarrow cos^2A\left(\frac{sin^2B}{sin^2A}-1\right)=cos^2B\left(1-\frac{sin^2A}{sin^2B}\right)\)

\(\Leftrightarrow\frac{cos^2A\left(sin^2B-sin^2A\right)}{sin^2A}=\frac{cos^2B\left(sin^2B-sin^2A\right)}{sin^2B}\)

\(\Leftrightarrow cot^2A\left(sin^2B-sin^2A\right)=cot^2B\left(sin^2B-sin^2A\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2B=sin^2A\\cot^2A=cot^2B\end{matrix}\right.\) \(\Rightarrow A=B\)