
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x . y . x . z . y . z = 3 . 4 . 6
(x . x) . (y . y) . (z . z) = 72
x2 . y2 . z2 = 72
=>A=72
\(xy=3;xz=4;yz=6\Rightarrow xy.xz.yz=3.4.6\Leftrightarrow\left(xyz\right)^2=72\)\(\Leftrightarrow xyz=\pm6\sqrt{2}\)
+)\(xyz=-6\sqrt{2}\) => \(x=-\sqrt{2};y=-\frac{3\sqrt{2}}{2};z=-2\sqrt{2}\)
Thay vào A
+))\(xyz=6\sqrt{2}\) => \(x=\sqrt{2};y=\frac{3\sqrt{2}}{2};z=2\sqrt{2}\)
Thay vào A

\(\left\{\begin{matrix}xy=3\left(1\right)\\xz=4\left(2\right)\\yz=6\left(3\right)\end{matrix}\right.\).Từ \(yz=6\Rightarrow z=\frac{6}{y}\) thay vào (2) ta có:
\(xz=4\Rightarrow x\cdot\frac{6}{y}=4\)\(\Leftrightarrow\frac{6x}{y}=4\Leftrightarrow6x=4y\Leftrightarrow y=\frac{6x}{4}=\frac{3x}{2}\) thay vào (1) ta có:
\(x\cdot\frac{3x}{2}=3\Leftrightarrow\frac{3x^2}{2}=3\Leftrightarrow3x^2=6\Leftrightarrow x^2=2\)
Từ \(\left(1\right)\Rightarrow x^2y^2=9\Rightarrow y^2=\frac{9}{x^2}=\frac{9}{2}\)
Từ \(\left(2\right)\Rightarrow x^2z^2=16\Rightarrow z^2=\frac{16}{x^2}=\frac{16}{2}=8\)
Khi đó \(A=x^2+y^2+z^2=2+\frac{9}{2}+8=\frac{29}{2}\)

- x.y=-2; xz=3 =>x2yz=-2.3=-6
=>x2=\(\frac{-6}{yz}\) = -6/-4=2/3
- xz=3;yz=-4 => z2xy=3.-4=-12
=> z2=-12/xy=-12/-2=6
- xy=-2;yz=-4=>y2xz=-2.-4=8
=>y^2=8/xz=8/-4=-2
====>x2+y2+z2=2/3+6-2=14/3

Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có:
+) x² + y² ≥ 2xy
x² + 1 ≥ 2x
+) y² + z² ≥ 2yz
y² + 1 ≥ 2y
+) z² + x² ≥ 2xz
z² + 1 ≥ 2z
=> 2 ( x2 + y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1
xy=4 , xz=6
=> \(x^2zy\)= 3x4=12
=>\(x^2\)=\(12:yz=12:6=2\)
\(xz=4,yz=6\)
=>\(z^2xy=6x4=24\)
=>\(z^2=24:xy=8\)
\(xy=3,yz=6\)
=>\(xy^2z=6x3=18\)
=>\(y^2=18:xz=18:4=4.5\)
Vậy \(x^2+y^2+z^2=2+8+4.5=14.5\)