Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề là \(\frac{xy+yz+xz}{xyz}\le1\) nhé!
Giải:
Ta có:
\(\left|H\right|=\left|\frac{xy+yz+xz}{xyz}\right|\le\frac{\left|xy\right|+\left|yz\right|+\left|xz\right|}{\left|xyz\right|}\)
\(=\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vậy \(H=\frac{xy+yz+xz}{xyz}\le1\) (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2y^1z^3.x^1y^2=4^3.4^9=4^{3+9}=4^{12}=4^{3.4}=\left(4^4\right)^3\)
\(x^{\left(2+1\right)}y^{\left(1+2\right)}z^3=\left(x^3.y^3.z^3\right)=\left(xyz\right)^3\)
\(\left(xyz\right)^3=\left(4^4\right)^3\Rightarrow xzy=4^4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^2+y^2-x-y=8\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)
Để VP=0 và là các số nguyên
=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)
a/ x^2 + y^2 - x - y = 8
<=> 4x^2 + 4y^2 - 4x - 4y = 32
<=> (2x - 1)^2 + (2y - 1)^2 = 34
<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25
Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
![](https://rs.olm.vn/images/avt/0.png?1311)
1,Thực hiện phép tính :
a, (x + 2)9 : (x + 2)6
=(x+2)9-6
=(x+2)3
b, (x - y) 4 : (x - 2)3
=(x-y)4-3
=x-y
c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)
=(x2+2x+4)5-1
=(x2+2x+4)4
d, 2(x2 + 1)3 : 1/3(x2 + 1)
=(2÷1/3).[(x2+1)3÷(x2+1)]
=6(x2+1)2
e, 5 (x - y)5 : 5/6 (x - y)2
=(5÷5/6).[(x-y)5÷(x-y)2]
=6(x-y))3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{2}x^2+\frac{1}{9}\right)=\left(x^2\right)^3-\left(\frac{1}{3}\right)^3=x^6-\frac{1}{9}\)
( x + 4 )( x2 - 4x + 16 ) = x3 + 43 = x3 + 64
( 1/3x + 2y )( 1/9x2 - 2/3xy + 4y2 ) = ( 1/3x )3 - ( 2y )3 = 1/27x3 - 8y3
( x - 3y )( x2 + 3xy + 9y2 ) = x3 - ( 3y )3 = x3 - 27y3
( x2 - 1/3 )( x4 + 1/3x2 + 1/9 ) = ( x2 )3 - ( 1/3 )3 = x6 - 1/27
HĐT số 6 + 7 bạn nhé ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\)
b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\)
d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)
b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)
c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)
d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)
\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)
\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)
\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)
\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
a, Xét vế trái ta có:
(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1
=x^3+ (x^2- x^2)+(x-x)-1
=x^3-1
Vậy...
b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)
=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4
=x^4-y^4
Vậy ........
c, Xét vế trái ta có:
(x+y+z)^2=(x+y+z)(x+y+z)
=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2
=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz
Vậy...............
d, Xé vế trái ta có:
(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)
=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2
=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)
Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)
=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)
=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)
=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)
=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)
Từ (1) và (2)=>.......
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\dfrac{3}{4}xy+\dfrac{3}{4}x^2y-\dfrac{3}{4}xy^2\Leftrightarrow\dfrac{3}{4}xy+\dfrac{3}{4}xy\left(x-y\right)\Leftrightarrow\dfrac{3}{4}xy\left(x-y+1\right)\)
c) \(x\left(x-2\right)+y\left(2-x\right)\Leftrightarrow x\left(x-2\right)-y\left(x-2\right)=\left(x-y\right)\left(x-2\right)\)
d) \(x\left(3-2x\right)+6-4x\Leftrightarrow x\left(3-2x\right)+2\left(3-2x\right)\Leftrightarrow\left(x+2\right)\left(3-2x\right)\)
\(\Rightarrow x^2yz^3.xy^2=4^3.4^9\Leftrightarrow x^3y^3z^3=4^{12}\Leftrightarrow\left(xyz\right)^3=\left(4^4\right)^3\Leftrightarrow xyz=4^4=256\)
Chẳng thấy kết quả ở đâu???![bucminh bucminh](https://hoc24.vn/media/cke24/plugins/smiley/images/bucminh.png)