K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow\frac{1}{a}=\frac{b+1}{b}\Rightarrow a=\frac{b}{b+1}\\ \)thế vào P ta có:
\(P=\frac{\frac{b}{b+1}-\frac{2b^2}{b+1}-b}{\frac{2b}{b+1}+\frac{3b^2}{b+1}-2b}=\frac{\frac{b-2b^2-b\left(b+1\right)}{b+1}}{\frac{2b+3b^2-2b\left(b+1\right)}{b+1}}=\frac{b-2b^2-b^2-b}{2b+3b^2-2b^2-2b}=\frac{-3b^2}{b^2}=-3\)

30 tháng 1 2017

1/a - 1/b = 1

<=> 1/a = 1 + 1/b = b+1/b

<=> a = b/b+1

Thay vào P ta được:

\(P=\frac{\frac{b}{b+1}-2.\frac{b}{b+1}.b-b}{2.\frac{b}{b+1}+3.\frac{b}{b+1}.b-2b}\)\(=\frac{b.\left(\frac{1}{b+1}-\frac{2b}{b+1}-\frac{b+1}{b+1}\right)}{b.\left(\frac{2}{b+1}+\frac{3b}{b+1}-\frac{2b+2}{b+1}\right)}\)= -3

3 tháng 7 2017

\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)

\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)

\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)

\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)Thay vào \(P\)ta được :

\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a\cdot2a\cdot2a}{a^3}=\frac{8a^3}{a^3}=8\)

17 tháng 11 2017

Có 20 học sinh nữ đang xếp thành một hàng thì có 4 học sinh nam chen vào hàng. Mỗi một học sinh nam đếm số bạn nữ đứng trước mình thì các con số thu được là 17, 14, 5 và 2 tương ứng. Mỗi một học sinh nữ cũng đếm số học sinh nam đứng trước mình. Hỏi tổng số các số mà các bạn nữ đếm được là bao nhiêu?

17 tháng 11 2017

Biết rồi còn hỏi%%@@@

24 tháng 1 2017

mình ấn lộn bạn nhé ra -2

31 tháng 7 2018

a3 + b3 + c3 = ( a + b + c). +( a2 + b2 + c2 - ab - bc - ca) + 3abc

                    = 0 . (a2 + b2 + c2 - ab - bc - ca ) + 3abc

                    = 3abc      ( đpcm)

31 tháng 7 2018

câu 2 chưa rõ đề nha

23 tháng 12 2016

Ta có: \(a+b=8\)

\(\Rightarrow\left(a+b\right)^2=8^2\)

\(\Rightarrow a^2+2ab+b^2=64\)

\(\Rightarrow a^2+2.10+b^2=64\)

\(\Rightarrow a^2+20+b^2=64\)

\(\Rightarrow a^2+b^2=44\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(=\left(a^2+b^2\right)-2.10\)

\(=44-20\)

\(=24\)

Vậy \(\left(a-b\right)^2=24\)

23 tháng 12 2016

(a-b)2 = a2-2ab+b2

= a2+2ab+b2 -4ab

=(a+b)2- 4ab

=82 - 4.10

=64-40

=24

thanks

11 tháng 2 2017

\(a^3+b^3=637\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=637\Rightarrow a^2-ab+b^2=\frac{637}{13}=49\)\(\left(a+b\right)=13\Rightarrow\left(a+b\right)^2=13^2=169\Leftrightarrow a^2+2ab+b^2=169\)

Ta có: \(a^2-ab+b^2=49\left(1\right)\)

\(a^2+2ab+b^2=169\left(2\right)\)

Lấy (2) trừ 1 ta được 3ab=120=>ab=40

ab=40=>-ab=-40=>a2+b2=49+40=89

\(\left(a-b\right)^2=a^2-2ab+b^2=a^2+b^2-2ab=89-2.40=89-80=9\)Nhập kết quả: 9

4 tháng 2 2017

9

21 tháng 5 2017

1) Ta có: a + b + c = 0 <=> \(a+b=-c\)

=> \(\left(a+b\right)^3=-c^3\)

=> \(a^3+3ab\left(a+b\right)+b^3\) = \(-c^3\)

=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)

=> \(a^3+b^3+c^3=-3ab.\left(-c\right)\) ( Vì \(a+b=-c\))

=> \(a^3+b^3+c^3=3abc\) => đpcm

21 tháng 5 2017

2) Vì a,b,c là độ dài 3 cạnh của tam giác

=> a,b,c > 0 và a < b+c ; b < a+ c ; c < a+ b

Ta có: \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\) = \(\dfrac{2a}{a+b+c}\) ( b + c > 0; a >0)

\(\dfrac{b}{a+c}< \dfrac{b+b}{a+c+b}\) = \(\dfrac{2b}{a+b+c}\) ( a + c > 0; b > 0)

\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}\) = \(\dfrac{2c}{a+b+c}\) ( a + b >0; c > 0)

=> \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\) < \(\dfrac{2a+2b+2c}{a+b+c}\) = \(\dfrac{2\left(a+b+c\right)}{a+b+c}\) = 2

=> đpcm

20 tháng 8 2017

1) Áp dụng HĐT mở rộng :

 \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(do a + b + c = 0)

\(\Rightarrow a^3+b^3+c^3=3abc\)

2 )Vì a;b;c là độ dài 3 cạch của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\a+b>c\end{cases}}\)(bđt tam giác)

\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)

\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)

3 ) \(x^5+y^5\ge x^4y+xy^4\)

\(\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x^3+y^3\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x+y\right)\left(x^2-xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4-x^3y+x^2y^2-xy^3\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\left(x^2+y^2\right)\ge0\)(luôn đúng với mọi \(x;y\ne0andx+y\ge0\))

Vậy \(x^5+y^5\ge x^4y+xy^4\)