\(ax+by\le c\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

+ Ta vẽ đường thẳng (d): ax+by=c

+ Chọn điểm M(x0,y0) ∉ (d) (thường là điểm (0,0)) và tính giá trị ax0 + by0

+ Nếu ax0 + by0>c thì nửa mặt phẳng bờ (d) chứa M(x0,y0) là tập hợp các điểm mà tọa độ của nó là nghiệm của bất phương trình.

+ Nếu ax0 + by00,y0) là tập hợp các điểm có tọa độ là nghiệm của bất phương trình.


13 tháng 11 2017

- Vẽ đường thẳng (d): ax + by = c.

- Chọn điểm M(xo, yo) không thuộc (d) (thường chọn điểm (0; 0)) và tính giá trị axo + byo.

- So sánh axo + byo với c:

     + Nếu axo + byo < c thì tọa độ điểm M thỏa mãn bất phương trình nên miền nghiệm là nửa mặt phẳng bờ (d) (tính cả đường thẳng d) chứa điểm M

     + Nếu axo + byo > c thì tọa độ điểm M không thỏa mãn bất phương trình nên miền nghiệm là nửa mặt phẳng bờ (d) (tính cả đường thẳng d) không chứa điểm M.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Bước 1: Mở trang Geoebra

Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô

Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).

Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:

x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.

Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y =  - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.

9 tháng 5 2017

a) \(\left\{{}\begin{matrix}2x-1\le0\\-3x+5< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
b) Vẽ hai đường thẳng \(y=3;2x-3y+1=0\).
Vì điểm \(O\left(0;0\right)\) có tọa độ thỏa mãn bất phương trình \(2x-3y+1>0\) và không thỏa mãn bất phương trình \(3-y< 0\) nên phần không tô màu là miền nghiệm của hệ bất phương trình: \(\left\{{}\begin{matrix}3-y< 0\\2x-3y+1>0\end{matrix}\right.\).
TenAnh1 TenAnh1 A = (-4.34, -5.96) A = (-4.34, -5.96) A = (-4.34, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) B = (11.02, -5.96)

15 tháng 4 2017

a) - x + 2 + 2(y - 2) < 2(1 - x) <=> y <

Tập nghiệm của bất phương trình là:

T = {(x, y)|x ∈ R; y < }.

Để biểu diễn tập nghiệm T trên mặt phẳng tọa độ, ta thực hiện:

+ Vẽ đường thẳng (d): y=

+ Lấy điểm gốc tọa độ O(0; 0) (d).

Ta thấy: 0 < - 0 + 2. Chứng tỏ (0; 0) là một nghiệm của bất phương trình. Vậy nửa mặt phẳng bờ là đường thẳng (d) (không kể bờ) chứa gốc O(0; 0) là tập hợp các điểm biểu diễn tập nghiệm của bất phương trình đã cho (nửa mặt phẳng không bị gạch sọc)

9 tháng 5 2017

a) Vẽ đường thẳng \(3+2y=0\). Vì điểm O(0;0) có tọa độ thõa mãn bất phương trình nên phần không tô màu là miền nghiệm của bất phương trình:
TenAnh1 TenAnh1 A = (-4.34, -5.96) A = (-4.34, -5.96) A = (-4.34, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) D = (10.28, -5.54) D = (10.28, -5.54) D = (10.28, -5.54) F = (9.98, -5.84) F = (9.98, -5.84) F = (9.98, -5.84)

9 tháng 5 2017

b) Tương tự:
TenAnh1 TenAnh1 A = (-4.34, -5.96) A = (-4.34, -5.96) A = (-4.34, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) D = (10.28, -5.54) D = (10.28, -5.54) D = (10.28, -5.54) F = (9.98, -5.84) F = (9.98, -5.84) F = (9.98, -5.84) H = (10.64, -5.76) H = (10.64, -5.76) H = (10.64, -5.76)

15 tháng 4 2017

a) <=>

Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).

b) <=>

Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).

15 tháng 4 2017

Giải bài 13 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Vẽ trên cùng một hệ trục tọa độ các đường thẳng

Δ : 3x + y = 9

Δ1 : x - y + 3 = 0

Δ2 : x + 2y = 8

Δ3 : y = 6

x-2y>1

=>-2y>1-x

=>2y<x-1

=>\(y< \dfrac{1}{2}x-\dfrac{1}{2}\)

Trên đường y=1/2x-1/2, ta thấy O(0;0) không thuộc \(y=\dfrac{1}{2}x-\dfrac{1}{2}\)

Thay x=0 vào 1/2x-1/2, ta được:

\(\dfrac{1}{2}\cdot0-\dfrac{1}{2}=-\dfrac{1}{2}< 0\)

Do đó, tập nghiệm của BPT x-2y>1 sẽ là nửa mặt phẳng không chứa biênvà cũng không chứa điểm 0 của đường thẳng x-2y=1

=>loading...