K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

hợp số

31 tháng 10 2016

Ta cho p = 3 để thử các phép tính trên 

p là số nguyên tố 

2p + 1 = 7 là số nguyên tố 

4p + 1 = 13 là số nguyên tố 

b: Gọi d=UCLN(2n+1;3n+1)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UC(2n+1;3n+1)={1;-1}

c: Gọi d=UCLN(75n+6;8n+7)

\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)

\(\Leftrightarrow d=13\)

=>UC(5n+6;8n+7)={1;-1;13;-13}

10 tháng 2 2016

p là snt lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2

Xét trường hợp p=3k+1 thì 2p+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 nên là hợp số( loại vì 2p+1 là snt)

p=3k+2 thì 2p+1=2(3k+2)+1=6k+4+1=6k+5 thỏa mãn là snt theo đề bài

Vậy p=3k+2

4p+1=4(3k+2)+1=12k+9=3(4k+3) chia hết cho 3 nên là hợp số

Vậy....

10 tháng 2 2016

Ai trình bày rõ ràng mình cho 

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

25 tháng 1 2021

thank you bn nha

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).

Do đó $p=3k+2$.

Khi đó:

$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)

19 tháng 7 2016

nếu p=2 thì p+2=2+2=4 ;p+4=2+4=6 (loại do 4 và 6 là hợp số)

nếu p=3 thì p+2= 3+2=5 ; p+4=3+4=7 ( đều là số nguyên tố)

xét p>3 có p= 3k + 1 hoặc p= 3k+2

với p = 3k + 1 thì p +2= 3k+1+2=3k+3=3.(k +1) chia hết cho 3

với p=3k+2 thì p+4 =3k+2+4= 3k +6 =3.(k+2) chia hết cho 3

vậy p=3 thỏa mãn yêu cầu đề bài

1 tháng 3 2017

Sai rồi!!người ta bảo p>5 mà oaoa

22 tháng 10 2016

hợp số