Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các trường hợp bằng nhau của tam giác thường là:
+) cạnh.cạnh.cạnh (c.c.c)
+) cạnh.góc.cạnh (c.g.c)
+) Góc.cạnh.góc (g.c.g)
Các trường hợp bằng nhau trong tam giác vuông là:
+) Hai cạnh góc vuông
+) Cạnh góc vuông và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một cạnh góc vuông
Mik trả lời có đúng ko ạ nếu đúng bạn k nha
Các trường hợp bằng nhau của tam giác thường là:
+) cạnh.cạnh.cạnh (c.c.c)
+) cạnh.góc.cạnh (c.g.c)
+) Góc.cạnh.góc (g.c.g)
Các trường hợp bằng nhau trong tam giác vuông là:
+) Hai cạnh góc vuông
+) Cạnh góc vuông và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một cạnh góc vuông
Giản Nguyên mình cũng ko biết bạn nhé, đề bài ghi như vậy nên mình mới ko hiểu
A B C D E G
a,Ta có: \(BD=CE\Rightarrow\frac{2}{3}BD=\frac{2}{3}CE\Rightarrow BG=CG.\)
Vậy tam giác BCG là tam giác cân tại G.
b, Ta có: \(\hept{\begin{cases}BD=CE\\BG=CG\end{cases}\Rightarrow BD-BG=CE-CG\Rightarrow GD=GE.}\)
Xét \(\Delta BGE\) và \(\Delta CGD:\)
\(\hept{\begin{cases}GD=GE\left(cmt\right)\\\widehat{BGE}=\widehat{CGD}\\BG=CG\left(cmt\right)\end{cases}\Rightarrow\Delta BGE=\Delta CGD\left(c.g.c\right)}\)
\(\Rightarrow BE=CD\)
Xét \(\Delta BCD\) và \(\Delta CDE:\)
\(\hept{\begin{cases}BC:chung\\BE=CD\left(cmt\right)\\BD=CE\left(gt\right)\end{cases}\Rightarrow\Delta BCD=\Delta CDE\left(c.c.c\right)}\)
c, Ta có: \(\Delta BCD=\Delta CDE\left(cmt\right)\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Vậy tam giác ABC là tam giác cân tại A.
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau |
Giống nhau : đều phải có cạnh bằng nhau
Khác nhau: TH1 : ba cạnh tương ứng bằng nhau (ko có góc t/ư bằng nhau)
TH2: 2 cạnh t/ư và 1 góc nằm giữa hai canh đó bằng nhau (có 1 góc bằng nhau )
TH3: 1 cạnh và 2 góc kề cạnh ấy bằng nhau ( có 2 góc bằng nhau)