\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^m+1\right)+1=2^{3m-218}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

<=> (24-1)(24+1).....(2m+1)=23m-218

<=> 22m-1+1=23m-218

<=> 22m=23m-218

<=>2m=3m-218

=>m=218

5 tháng 4 2017

<=> (24-1)(24+1).....(2m+1)+1=23m-218

<=> 22m-1+1=23m-218

<=> 22m=23m-218

<=>2m=3m-218

=>m=218

ở dưới mình nhầm nha!!!

2 tháng 11 2019

a) Ta có:

\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)

\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)

\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)

2 tháng 11 2019

b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)

\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)

\(=\frac{4}{3m+2}\left(đpcm\right)\)

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)

1. tính a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\) b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\) d) \(\left(\dfrac{1}{2}x-2y\right)^3\) e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\) f) \(27x^3-8y^3\) g) 4(2x - 3y) - 4 - (2x-3y)2 2. rút gọn a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\) b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\) c)...
Đọc tiếp

1. tính

a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)

b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)

c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)

d) \(\left(\dfrac{1}{2}x-2y\right)^3\)

e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)

f) \(27x^3-8y^3\)

g) 4(2x - 3y) - 4 - (2x-3y)2

2. rút gọn

a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)

b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)

c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)

d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)

3. c/m các biểu thức sau ko phụ thuộc vào biến x,y

a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)

b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)

c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)

d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

4. Tìm x

a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)

b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

c) \(49x^2+14x+1=0\)

d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

5. c/m biểu thức luôn dương:

a) \(A=16x^2+8x+3\)

b) \(B=y^2-5y+8\)

c) C= \(2x^2-2x+2\)

d) \(D=9x^2-6x+25y^2+10y+4\)

6. Tìm GTLN và GTNN của các biểu thức sau

a) \(M=x^2+6x-1\)

b) \(N=10y-5y^2-3\)

7. thu gọn

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)

b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

2
9 tháng 9 2017

Bạn đăng từ từ thôi!

Dài quá

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\) giải •nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\) •nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\) •nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\) ◘ từ 3 ĐK trên, ta có: \(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x<...
Đọc tiếp

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\)

giải

•nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\)

•nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\)

•nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\)

◘ từ 3 ĐK trên, ta có:

\(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x< 2\right)\\2.\left(x-2\right)+3.\left(x+1\right)-x+1=2x\left(với\:x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2x-3x-3-x+1=2x\\4-2x+3x+3-x+1=2x\\2x-4+3x+3-x+1=2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-2\\-2x=-8\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(loại\right)\\x=4\left(loại\right)\\x=0\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

P/S: giải dùm cho 1 bạn nhờ, đừng ném đa hay gạch j nhé !!!

My name is ???

1

My name is ???

b: \(\Leftrightarrow m^2x-m^2+m-x\left(3m-2\right)=0\)

\(\Leftrightarrow x\left(m^2-3m+2\right)=m^2-m\)

Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình có nghiệm duy nhất thì (m-2)(m-1)<>0

hay \(m\notin\left\{2;1\right\}\)

b: \(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)

\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=m^2-1\)

Để phương trình có vô số nghiệm thì m+1=0

hay m=-1

Để phương trình vô nghiệm thì m-2=0

hay m=2

Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0

hay \(m\notin\left\{2;-1\right\}\)

a: \(\Leftrightarrow8x+16-5x^2-10x+4x^2-4x-8+2\left(x^2-4\right)=0\)

\(\Leftrightarrow-x^2-6x+8+2x^2-8=0\)

=>x^2-6x=0

=>x(x-6)=0

=>x=6 hoặc x=0

b: \(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1-33\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+34=0\)

=>\(10x^2-19x=0\)

=>x(10x-19)=0

=>x=0 hoặc x=19/10

a) Ta có: \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\left(6x-2\right)^2-2\cdot\left(6x-2\right)\left(5x-2\right)+\left(5x-2\right)^2=0\)

\(\Leftrightarrow\left(6x-2-5x+2\right)^2=0\)

\(\Leftrightarrow x^2=0\)

hay x=0

Vậy: x=0

b) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)-5=0\)

\(\Leftrightarrow x^3-6-x^2+4x=0\)

\(\Leftrightarrow4x-6=0\)

\(\Leftrightarrow4x=6\)

hay \(x=\frac{3}{2}\)

Vậy: \(x=\frac{3}{2}\)

c) Ta có: \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)

\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+27\right)+3x^2-12-2=0\)

\(\Leftrightarrow x^3+3x-15-x^3-27=0\)

\(\Leftrightarrow3x-42=0\)

\(\Leftrightarrow3x=42\)

hay x=14

Vậy: x=14