![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải
y là :
5 - 1 = 4
Vậy x là : 3
5x + 1
= 53 + 1 = 54
Ta có : \(\frac{x}{y+1}=\frac{3}{5}\)
\(\Rightarrow x=3;y=4\)
\(\Rightarrow5x+1=3.5+1=16\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x/y+1=3/5
=> 5x = 3ỹ3
=> 5x+1 = 3y +3+1
=> 5x+1 = 3y + 4
=> điều kiện là 5x+1=3y+4
ủng hộ nhé
Theo bai ra x/y+1=3/5
suy ra 5x=3y+3
suy ra 5x+1=3y+3+1
5x+1=3y+4
![](https://rs.olm.vn/images/avt/0.png?1311)
c)\(\left|2x+3\right|=x+2\)
Đk:\(x+2\ge0\Rightarrow x\ge-2\)
TH1:2x+3=x+2
\(\Rightarrow2x-x=2-3\)
\(\Rightarrow x=-1\)(Thỏa mãn đk )
TH2:2x+3=-x-2
\(\Rightarrow2x+x=-2+3\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)(Thỏa mãn đk)
Vậy x=-1 hoặc x=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{5x-1}{3}=\frac{7y-6}{5}=\frac{5x-1-7y+6}{3-5}=\frac{5x-7y+5}{-2}=\frac{5x-7y-7}{4x}\)
\(\frac{5x-7y+5}{-2}=\frac{5x-7y-7}{4x}=\frac{5x-7y+5-5x+7y+7}{-2-4x}=\frac{12}{-2-4x}\)
\(\Rightarrow\frac{5x-1}{3}=\frac{6}{-1-2x}\)
Giải ra tìm x thế vào PT đầu tiên để tìm y
Ta có: \(\frac{x}{y+1}=\frac{3}{5}\)
=> 5x = 3y+3
=> 5x +1 = 3y+4
Bài này có rất nhiều kết quả