\(\frac{a+b}{c}=\frac{6}{5}\)và \(\frac{b+c}{a}=\frac{9}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

THEO PHÂN SỐ : \(\frac{a+b}{c}=\frac{6}{5}\) \(\Rightarrow\) \(\hept{\begin{cases}a+b=6\\c=5\end{cases}}\)1

THEO PHÂN SỐ:\(\frac{b+c}{a}=\frac{9}{2}\Rightarrow\hept{\begin{cases}b+c=9\\a=2\end{cases}}\)2

THEO VÀ 2 , TA CÓ :  \(\frac{a+c}{b}=\frac{2+5}{4}=\frac{7}{4}\)

ĐÁP SỐ \(\frac{a+c}{b}=\frac{7}{4}\)

   ~ HOK TỐT ~

13 tháng 6 2018

\(\frac{a+b}{c}=\frac{6}{5}\Rightarrow\frac{a+b}{6}=\frac{c}{5}=\frac{a+b+c}{6+5}=\frac{a+b+c}{11}\left(1\right)\)

\(\frac{b+c}{a}=\frac{9}{2}\Rightarrow\frac{b+c}{9}=\frac{a}{2}=\frac{a+b+c}{9+2}=\frac{a+b+c}{11}\left(2\right)\)

từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a+b}{6}=\frac{c}{5}=\frac{b+c}{9}=\frac{a}{2}=\frac{a+b+c}{11}\Rightarrow\frac{c}{5}=\frac{a}{2}\Rightarrow2c=5a\Rightarrow c=\frac{5}{2}a\)

\(\frac{a+b}{6}=\frac{b+c}{9}\Rightarrow\frac{3\left(a+b\right)}{6}=\frac{3\left(b+c\right)}{9}=\frac{a+b}{2}=\frac{b+c}{3}=\frac{a}{2}+\frac{b}{2}=\frac{b}{3}+\frac{c}{3}\)

\(\Rightarrow\frac{b}{2}-\frac{b}{3}=\frac{c}{3}-\frac{a}{2}=\frac{3b-2b}{6}=\frac{2c-3a}{6}=\frac{b}{6}=\frac{2c-3a}{6}\Rightarrow b=2c-3a\)mà \(c=\frac{5}{2}a\)

\(\Rightarrow b=2c-3a=2\cdot\frac{5}{2}a-3a=5a-3a=2a\)

\(\Rightarrow\frac{a+c}{b}=\frac{a+\frac{5}{2}a}{2a}=\frac{\frac{7}{2}a}{2a}=\frac{7}{4}\)

30 tháng 12 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^2+2\left(\frac{1}{a}+\frac{1}{b}\right)\frac{1}{c}+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+2\frac{1}{a}.\frac{1}{b}+\left(\frac{1}{b}\right)^2+2\left(\frac{1}{ac}+\frac{1}{bc}\right)+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\left(\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{a+b+c}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

30 tháng 12 2017

ok thank bn

27 tháng 7 2019

Ta có : a + b + c = abc

\(\frac{\Rightarrow\left(a+b+c\right)}{abc}=\frac{abc}{abc}\) 

\(\Rightarrow\frac{1}{ac}+\frac{1}{bc}+\frac{1}{ab}=1\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) 

 \(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\) 

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)  

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\) 

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\) 

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

27 tháng 7 2019

\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=\frac{abc}{abc}=1\left(\text{vì }a+b+c=abc\right)\)

\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.1=2\left(\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\right)\)

Vậy ... 

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)