Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : Sửa đề :
Tìm x,y,z
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)
Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)
=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)
=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm
Tìm nốt bài cuối nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
1, Ta có: \(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)
\(\Rightarrow x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x+2y+2z=\frac{13}{12}\)
\(\Rightarrow2\left(x+y+z\right)=\frac{13}{12}\)
\(\Rightarrow x+y+z=\frac{13}{24}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)
2, Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tc dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)
3, Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tc dãy tỉ số bằng nhau, ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5x}{3.21-7.14+5.10}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
e) Ta có:
\(\left\{{}\begin{matrix}2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{1}{7}.\frac{x}{3}=\frac{1}{7}.\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\\7z=5y\Leftrightarrow\frac{z}{5}=\frac{y}{7}\Leftrightarrow\frac{1}{2}.\frac{z}{5}=\frac{1}{2}.\frac{y}{7}\Leftrightarrow\frac{z}{10}=\frac{y}{14}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)
f)Ta có:
\(\frac{x}{4}=\frac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=4k5k=20k^2=80\Leftrightarrow k^2=4\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1: \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
TH2: \(k=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)
g)Ta có:
\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}=\frac{3\left(x+3\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{7\left(z-1\right)}{49}=\frac{3x+9}{15}=\frac{5y-10}{15}=\frac{7z-7}{49}=\frac{3x+9+5y-10-\left(7z-7\right)}{15+15-49}=\frac{3x+5y-7z+\left(9-10+7\right)}{-19}=\frac{38}{-19}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-13\\y=-4\\z=-13\end{matrix}\right.\) h)Ta có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x^2}{4^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{16-9}=\frac{63}{7}=9\) \(\Rightarrow\left\{{}\begin{matrix}x^2=144\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\\y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\end{matrix}\right.\) Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=9\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-9\end{matrix}\right.\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)
Vậy ....
b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)
Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được :
\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)
Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)
Vậy .....
c) Ta có : \(x\div y\div z=3\div4\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)
Vậy ...
d) Ta có : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
\(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được :
\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)
\(\Leftrightarrow63y-98y+50y=-420\)
\(\Leftrightarrow15y=-420\Rightarrow y=-28\)
Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)
e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)
Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)
Vậy ...
a) ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\frac{y}{6}=\frac{2y}{12}\)
\(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\) (2)
từ (1) và (2) suy ra:
\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)
..................................y;z bn tự tính ha!^^
b) ta có:
\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)
\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)
thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương tự lun! (câu c mk ko pik làm đâu!^^)
e)
ta có:
3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
vì xy = 84 nên : 7k.3k = \(84\)
\(\Rightarrow21k^2=84\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
với k = 2 thì x =........... ; y=................
với k=-2 thì x=........ ; y=....................
ự làm nốt ha!the end!^^
Ta có:
x+6y=18
\(\Rightarrow2x+12y=36\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x+7y}{2}=\frac{5y-x}{4}=\frac{3x+7y+5y-x}{2+4}=\frac{2x+12y}{6}=\frac{36}{6}=6\)
\(\Rightarrow\orbr{\begin{cases}\frac{3x+7y}{2}=6\\\frac{5y-x}{4}=6\end{cases}\Rightarrow\orbr{\begin{cases}3x+7y=12\\5y-x=24\end{cases}}\Rightarrow\orbr{\begin{cases}6x+14y=24\\5y-x=24\end{cases}}\Rightarrow6x+14y=5y-x=24}\)
Có \(6x+14y=5y-x\)
\(\Rightarrow7x=-9y\)
\(\Rightarrow\frac{x}{-9}=\frac{y}{7}\)
Mà \(\frac{y}{7}=\frac{6y}{42}\)
\(\Rightarrow\frac{x}{-9}=\frac{6y}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-9}=\frac{6y}{42}=\frac{x+6y}{-9+42}=\frac{x+6y}{33}=\frac{18}{33}=\frac{6}{11}\)
\(\Rightarrow\orbr{\begin{cases}\frac{x}{-9}=\frac{6}{11}\\\frac{6y}{42}=\frac{6}{11}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-54}{11}\\y=\frac{42}{11}\end{cases}}}\)
Còn lại b tự làm nốt nhé.