Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{b}=3\Leftrightarrow\frac{b+a}{ab}=3\Leftrightarrow b+a=3ab\)
\(\frac{b}{a}+\frac{a}{b}=\frac{b^2+a^2}{ab}\)\(=\frac{\left(a+b\right)^2-2ab}{ab}\)\(=\frac{\left(3ab\right)^2}{ab}-2=9ab-2\)
Từ \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}\Rightarrow\frac{b}{ab}+\frac{a}{ab}=\frac{1}{a+b}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{1}{a+b}\Rightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow a^2+2ab+b^2=ab\Rightarrow a^2+ab+b^2=0\)
\(\Rightarrow a^2+b^2=-ab\). Lại có \(\frac{b}{a}+\frac{a}{b}=\frac{b^2}{ab}+\frac{a^2}{ab}=\frac{a^2+b^2}{ab}=\frac{-ab}{ab}=-1\)
\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow b-a=ab\)
\(P=\frac{-\left(b-a\right)-2ab}{-2\left(b-a\right)+3ab}=\frac{-3ab}{ab}=-3\)
a) A = ( \(\frac{x+1}{x-1}\)\(-\)\(\frac{x-1}{x+1}\)) \(\div\)\(\frac{2x}{5x-5}\)
= ( \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)\(-\)\(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)) \(\div\)\(\frac{2x}{5x-5}\)
= \(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)\(\div\)\(\frac{2x}{5x-5}\)
= \(\frac{\left(x+1-x+1\right)\left(x+1+x-1\right)}{\left(x-1\right)\left(x+1\right)}\)\(\times\)\(\frac{5\left(x-1\right)}{2x}\)
= \(\frac{4x}{\left(x-1\right)\left(x+1\right)}\)\(\times\)\(\frac{5\left(x-1\right)}{2x}\)
= \(\frac{10}{x+1}\)
1/a+1/b=1/a+b
=>(a+b)^2=ab
=>a^2+b^2+2ab-ab=0=>a^2+b^2+ab=0=>a^2+b^2=-ab
ta có a/b+b/a=(a^2+b^2)/ab=-ab/ab=-1
a)Ta có : \(4x^2=1\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
mà \(x\ne-\frac{1}{2}\Rightarrow x=\frac{1}{2}\)
Thay \(x=\frac{1}{2}\)vào B , ta được:
\(B=\frac{\left(\frac{1}{2}\right)^2-\frac{1}{2}}{2.\frac{1}{2}+1}=\frac{\frac{1}{4}-\frac{1}{2}}{1+1}=\frac{-\frac{1}{4}}{2}=-\frac{1}{8}\)
Vậy \(B=-\frac{1}{8}\)khi \(4x^2=1\)
b)Ta có : \(A=\frac{1}{x-1}-\frac{x}{1-x^2}\)
\(=\frac{1}{x-1}+\frac{x}{x^2-1}\)
\(=\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow M=A.B=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x^2-x}{2x+1}\)
\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x\left(x-1\right)}{2x+1}\)
\(=\frac{x}{x+1}\)
Vậy \(M=\frac{x}{x+1}\)
c)Ta có: \(x< x+1\forall x\)
\(\Rightarrow M=\frac{x}{x+1}< \frac{x+1}{x+1}=1\forall x\ne-1\)
Vậy với mọi \(x\ne-1\)thì \(M< 1\)
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
Ta có: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{1}{a+b}\)
\(\Rightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow a^2+2ab+b^2=ab\)
\(\Rightarrow a^2+b^2=-ab\)
Lại có: \(\frac{b}{a}+\frac{a}{b}=\frac{b^2+a^2}{ab}=\frac{-ab}{ab}=-1\)
Vậy \(\frac{b}{a}+\frac{a}{b}=-1\)