K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì (d)//y=1/2x+1 nên \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne1\end{matrix}\right.\)

Vậy: (d): \(y=\dfrac{1}{2}x+b\)

Thay x=2 và y=2 vào (d), ta được:

\(b+\dfrac{1}{2}\cdot2=2\)

=>b+1=2

=>b=1

vậy: (d): \(y=\dfrac{1}{2}x+1\)

b: loading...

c: Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

Ta có: (d): \(y=\dfrac{1}{2}x+1\)

=>a=1/2

=>\(tan\alpha=a=\dfrac{1}{2}\)

=>\(\alpha\simeq26^034'\)

d: tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-2\end{matrix}\right.\)

Tọa độ C là;

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}x+1=\dfrac{1}{2}\cdot0+1=1\end{matrix}\right.\)

Vậy: B(-2;0); C(1;0)

\(OB=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{2^2+0^2}=2\)

\(OC=\sqrt{\left(1-0\right)^2+\left(0-0\right)^2}=\sqrt{1^2+0^2}=1\)

Vì Ox\(\perp\)Oy nên OB\(\perp\)OC

=>ΔBOC vuông tại O

=>\(S_{BOC}=\dfrac{1}{2}\cdot OB\cdot OC=\dfrac{1}{2}\cdot2\cdot1=1\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2022

Lời giải:

a. ĐTHS đi qua $A(4;8)$ nên $y_A=ax_A+4$

$\Leftrightarrow 8=4a+4\Leftrightarrow a=1$

b. ĐTHS hàm số vừa tìm được là $y=x+4$

Với $x=0$ thì $y=0+4=4$. Ta có điểm $A(0;4)$

Với $x=1$ thì $y=1+4=5$. Ta có điểm $B(1;5)$

Nối $A,B$ ta có đths $y=x+4$

6 tháng 6 2021

a) Đường thẳng d song song với đường thằng d'

=> \(\left\{{}\begin{matrix}a=12\\b\ne1\end{matrix}\right.\)

Thay x=2; y=-2, ta được:

\(-2=2.12+b\Rightarrow b=-26\)

P/s: Thấy đề nó sao sao, 12 to quá nhỉ:D?

b/ Vẽ tự vẽ nhé bạn.

c/ Gọi góc đó là \(\alpha\), ta có:

\(tg\alpha=\dfrac{26}{13}\)\(\Rightarrow\alpha=\)63o26'

d/ \(S_{OBC}=\dfrac{1}{2}OB.OC=\dfrac{1}{2}.26.13=169\left(cm^2\right)\)

Đúng đúng không ta;v?

6 tháng 6 2021

1/2 đấy bạn

 

7 tháng 2 2021

- Gọi phương trình đường thẳng cần tìm có dạng : y = ax + b

- Thay tọa độ của điểm O và P và hàm số ta được hệ :

\(\left\{{}\begin{matrix}0a+b=0\\a\sqrt{3}+b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)

=> Phương trình đường thẳng là : \(y=\dfrac{\sqrt{3}}{3}x\)

\(\Rightarrow Tan\alpha=a=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow\alpha=30^o\)

Vậy ...

16 tháng 11 2021

a>0 => góc nhọn

a<0 => góc tù