K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bất đẳng thức nổi tiếng

  • Bất đẳng thức Bunyakovsky.
  • Bất đẳng thức Azuma.
  • Bất đẳng thức Bernoulli.
  • Bất đẳng thức Boole.
  • Bất đẳng thức Cauchy-Schwarz.
  • Bất đẳng thức cộng Chebyshev.
  • Bất đẳng thức Chernoff.
  • Bất đẳng thức Cramer-Rao
  • :333
12 tháng 12 2021

Tôi đã học :

-bất đảng thức cô-si

-bất đảng thức bunyakovsky

về phần ví dụ thì tui chịu nha

Quên hết rùi

10 tháng 11 2021

Tham khảo :

Nhị thức Newton là 1 công thức khai triển hàm mũ của tổng. Cụ thể là khai triển một nhị thức bậc n ((a+b)n) thành một đa thức có n+1 số hạng.

HT 

Công thức

{\displaystyle (a+b)^{n}=C_{n}^{0}.a^{n}.b^{0}+C_{n}^{1}.a^{n-1}.b^{1}+C_{n}^{2}.a{n-2}.b^{2}+...+C_{n}^{k}.a{n-k}.b^{k}+...+C_{n}^{n}.a^{0}.b^{n}} {\displaystyle \rightarrow {\left({a+b}\right)^{n}}=\sum \limits _{k=0}^{n}{C_{n}^{k}{a^{n-k}}{b^{k}}=\sum \limits _{k=0}^{n}{{a^{k}}{b^{n-k}}}}}

24 tháng 11 2021

Tham khảo :

chrome-untrusted://new-tab-page/custom_background_image?url=https%3A%2F%2Flh5.googleusercontent.com%2Fproxy%2FtjJRG8ELyrHCJQ18ThdF1ybYJ9CP1q6jDyCAECruLxqefc2gvH9YYUjKItQyvmWClmOoC3XivqciC7PbY2-

1NtWxLE7fNsJFqYflxTi2EyE%3Dw3840-h2160-p-k-no-nd-mv

29 tháng 11 2019

Các tính chất :

Giải bài 2 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

24 tháng 8 2016

 

I have not worked(i) today.

25 tháng 8 2016

what do you mean?

17 tháng 6 2018

 

3 tháng 4 2017

Lời giải:

Cho hàm số y= f(x) liên tục trên [a; b] , F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là ∫abf(x)dx.

Ta có: ∫abf(x)dx=F(x)ab=F(b)-F(a)

Ta gọi ∫ab là dấu tích phân, a là cận dưới, b là cận trên, f(x)dx biểu thức dưới dấu tích phân, f(x) là hàm số dưới dấu tích phân.

2.Các tính chất

1. ∫aaf(x)dx=0

2. ∫abf(x)dx=- ∫baf(x)dx

3. ∫bakf(x)dx=k. ∫baf(x)dx ( k là hằng số)

4. ∫ab[f(x)±g(x)]dx= ∫abf(x)dx± ∫abg(x)dx

5. ∫abf(x)dx= ∫acf(x)dx+ ∫abf(x)dx(a<c<b)

22 tháng 12 2017

+ Phương pháp nguyên hàm từng phần:

Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:

∫u(x).v’(x)dx = u(x).v(x) - ∫v(x).u’(x)dx

Hay viết gọn: ∫udv = uv - ∫vdv.

Giải bài 1 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

26 tháng 5 2022

\(4!-4-\dfrac{4}{4}\)\(=24-4-1=19\)

26 tháng 5 2022

\(\left[\sqrt{4!\sqrt{4!\sqrt{4!\sqrt{4!}}}}\right]=19\)