Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|a+b\right|< \left|a-b\right|\)
\(\Leftrightarrow\hept{\begin{cases}0< \left|a+b\right|\\0< \left|a-b\right|\end{cases}}\Leftrightarrow\hept{\begin{cases}0< a+b\\0< a-b\end{cases}}\Leftrightarrow\hept{\begin{cases}-a< b\\b< a\end{cases}}\Rightarrow\hept{\begin{cases}a>b\\b< a\end{cases}}\Rightarrow a>b\)
Ta có :
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)
\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)
\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)
Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :
\(A+B=x\left(x^2-3y\right)+2y\)
\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)
\(\Rightarrow\)Các đa thức này là các số hữa tỉ \(\left(đpcm\right)\)
Cách phá giá trị tuyệt đối
I A I=B=>\(\orbr{\begin{cases}A=B\\-A=B\end{cases}}\)
Giả sử
Tìm x, biết: Ix+3I=12
Giải
Ta có:
Ix+3I=12
=> \(\orbr{\begin{cases}x+3=12\\x+3=-12\end{cases}}\)
=> \(\orbr{\begin{cases}x=9\\x=-15\end{cases}}\)
Vậy x=9 hoặc x=-15
Đó là cách phá giá trị tuyệt đối bạn nhé