Nếu bz-cy/a = cx-az/b = ay-bx/c thì x, y, z tỉ lệ với a, b, c

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-caz}{b^2}=\dfrac{cay-cbx}{c^2}=\dfrac{abz-acy+bcx-caz+cay-cbx}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)

Do đó :

\(abz=acy\Leftrightarrow bz=cy\Leftrightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)

\(bcx=baz\Leftrightarrow cx=az\Leftrightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\rightarrowđpcm\)

9 tháng 12 2018

Đúng rồi nha bạn

đúng rồi nha !

16 tháng 10 2018

\(\frac{bz-cy}{a}\)\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}\)=\(\frac{bcx-baz}{b^2}\)\(\frac{cay-cbx}{c^2}\)

Áp dụng t/c ãy tỉ số bằng nhau, ta có:

17 tháng 10 2017

\(\frac{ay-bx}{c}=\frac{bz-cy}{a}=\frac{cx-az}{b}\)

\(\Rightarrow\frac{cay-cbx}{c^2}=\frac{abz-cay}{a^2}=\frac{cbx-abz}{b^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{cay-cbx}{c^2}=\frac{abz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{\left(cay-cbx\right)+\left(abz-cay\right)+\left(cbx-abz\right)}{a^2+b^2+c^2}=0\)

Do đó : \(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )

\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

9 tháng 10 2015

vế 1 thiếu x

vế 2 thiếu y

vế 3 thiếu z

nhấn ba vế với cái thiếu

ta có

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

Theo TCDTSBN`, ta có

 

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

= cộng chừng đó lại tử + tử, mẫu + mẫu

=0/(ax+by+cz)

=0

=>bzx=cxy

=>cxy=ayz

=>bxz=cxy=ayz

=>a:b:c=x:y:z

đó mỏi tay lắm rồi đó