Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)
Lời giải:
Xét hiệu:
$a^2+b^2+c^2-(2ab-2ac+2bc)=a^2+b^2+c^2-2ab+2ac-2bc$
$=(a^2+b^2-2ab)+c^2+2c(a-b)$
$=(a-b)^2+c^2+2c(a-b)=(a-b+c)^2\geq 0, \forall a,b,c\in\mathbb{R}$
$\Rightarrow a^2+b^2+c^2\geq 2ab-2ac+2bc$
Vậy ta có đpcm.
Dấu "=" xảy ra khi $a-b+c=0$
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để đề được rõ ràng hơn nhé.
\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)
Áp dụng \(\left(x+y\right)^2\ge4xy\)
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
Đặt \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
Với mọi \(a,b,c>0\) thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:
\(a^3+b^3\ge a^2b+ab^2;\) \(b^3+c^3\ge b^2c+bc^2\) và \(b^3+c^3\ge b^2c+bc^2\)
Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức \(A\) sẽ trở thành:
\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)
Xảy ra đẳng thức trên khi và chỉ khi \(a=b=c\)
a^2 + b^2 > hoặc = 25 <=> a^2 > hoặc = 25 - b^2
Khi a > hoặc = 3 thì 3^2 > hoặc = 25 - b^2
<=> b > hoặc = 4
=> a + b > hoặc = 7
đpcm