Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C D E
Xét \(\Delta ABC\) Và \(\Delta DEC\) có :
\(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )
\(\widehat{C}\) là góc chung
\(\Rightarrow\)\(\Delta ABC\) ~ \(\Delta DEC\) ( g-g )
Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :
\(BC^2\)= \(AB^2\)\(+\)\(AC^2\)
\(BC^2\)= 32 + 52
\(BC^2\)= 9 + 25
\(BC^2\)= 34
\(BC=\sqrt{34}\)
Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)
\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)
\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)
Ta có : \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow k^2=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\Rightarrow k^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow k^2=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Và \(k.k=\frac{a}{c}.\frac{b}{d}\)
\(\Rightarrow k^2=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) , ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
a) Xét ΔOIC và ΔABC có:
\(\widehat{ACB}\) : góc chung
\(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))
=> ΔOIC~ΔABC(g.g)
=>\(\frac{OI}{AB}=\frac{CI}{BC}\)
=> BC.OI=AB.CI
b) Theo định lý đảo của định lý ta-let vào ΔBDC :
=> \(\frac{OI}{DC}=\frac{BI}{BC}\)
a: Xét ΔDAB có
I là trung điểm của BD
E là trung điểm của AD
DO đó: IE là đường trung bình
=>IE//AB
Xét ΔBDC có
I là trung điểm của BD
F là trung điểm của BC
Do đó: IF là đường trung bình
=>IF//DC
b: \(\dfrac{AB+CD}{2}=EI+FI>=EF\)