Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
Mà \(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)
Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)
\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a^3+b^3\right)+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)
Vì a+b+c=0 \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\)
Do đó: \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)
Miyuki Misaki cm ngược rồi
Ta có : a + b + c = 0
<=> a + b = -c {...........}
<=> (a + b)3 = -c3
<=> a3 + b3 + 3ab(a + b) = -c3
<=> a3 + b3 + c3 = -3ab(a + b)
<=> a3 + b3 + c3 = -3ab(-c) {vì a + b = -c}
<=> a3 + b3 + c3 = 3abc