Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
Mà \(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
A,
Ta có : a + b + c =1
<=> ( a +b + c) 2 = 1
<=> a2 + b2 + c2 + 2 (ab +bc +ac ) =1
=> ab + bc +ac = 0
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{z}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\left\{{}\begin{matrix}x=a\left(x+y+z\right)\\y=b\left(x+y+z\right)\\z=c\left(x+y+z\right)\end{matrix}\right.\)
xy + yz +zx
= ab(x+y+z)2 + bc (x+y+z)2 + ca(x+y+z)2
= (ab+bc +ca ) ( x+y+z)2 =0
(b-c)/(a-b)(a-c) =(b-a+a-c)/(a-b)(a-c)
=(b-a)/(a-b)(a-c) + (a-c)/(a-b)(a-c)
=1/(a-b) +1/(c-a)
CMTT:
(c-a)/(b-c)(b-a) =1/(b-c) +1/(a-b)
(a-b)/(c-a)(c-b) =1/(c-a) +1/(b-c)
Cộng theo vế là ra
b) ta có: 30=2.3.5
\(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\)
\(\Rightarrow\hept{\begin{cases}a^5\equiv a^2\equiv a\left(mod2\right)\\b^3\equiv b\left(mod3\right)\\c^5\equiv c\left(mod5\right)\end{cases}\Rightarrow b^5\equiv b^3\equiv b\left(mod3\right)}\)
\(\Rightarrow a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\)
\(a^2+b^2+c^2=\left(a+b+c\right)+\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=\left(a+b+c\right)+a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=\left(a+b+c\right)+\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)\)
\(mà\)\(a\left(a-1\right)\left(a+1\right)⋮6\)
\(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
\(a+b+c⋮6\)
\(\Leftrightarrow(a^3+b^3+c^3)⋮6\)\((đpcm)\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(a+c-2b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=6\left(a^2+b^2+c^2\right)-6\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\).
\(NếuA+B=C\)
\(B=C-A\)
\(A=C-B\)
\(NếuA.B=C\)
\(B=\frac{C}{A}\)
\(A=\frac{C}{B}\)
bn làm đúg r đó