Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)
Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)
Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)
Ta có :
\(\left(Ax+B\right)\left(Cx+d\right)=ACx^2+\left(BC+AD\right)x+BD\)
\(=50x^2+25x-3\)
Mà D=-1=>B=3 .
Ta có :AC và 3C-A=25=>C=10 và A=5 .
Thay vào \(\left(\frac{10}{5}-3\right)\left(-1\right)^{2017}=-1.-1=1\)
(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)
Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1
\(\left(Ax+B\right)\left(Cx+D\right)=A.C.x^2+\left(B.C+A.D\right)x+AD=50x^2+25x-3\)
\(\hept{\begin{cases}A.C=50\\B.C+A.D=25\\A.D=-3\end{cases}}\)do D=-1 ta tính được\(\hept{\begin{cases}A=3\\B=\frac{42}{25}\\C=\frac{50}{3}\end{cases}}\)
\(\left(\frac{C}{A}-B\right)D^{2017}=-\frac{827}{225}\)
Cách giải bài này :
Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn
Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)
Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)
Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1
Trừ từng vế (1) và (2) ....
Em tính thêm Q(3) nữa là đc
Làm theo cách phân tích con này không đơn giản
(violypic cần nhanh nữa)
Cách Phân phối:
\(\left(ax+b\right)\left(cx+d\right)=acx^2+\left(bc+ad\right)x+bd\)
d=-1=> b=3
ac=50 và 3c-a=25 => c=10 và a=5
Thay vào \(\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)