![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ahihi câu 1 nó cho sẵn òi kìa... m bằng ba cái phân số trên đó há há há :)))
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
\(A=x^2+2x+2012\)
\(=\left(x^2+2x+1\right)+2011\)
\(=\left(x+1\right)^2+2011\)
Ta có: \(\left(x+1\right)^2\ge0,\forall x\)
\(\Rightarrow\left(x+1\right)^2+2011\ge2011,\forall x\)
Hay \(A\ge2011,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy Min A=2011 tại x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)
b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)mà\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
a) \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)
b) .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
c) \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2/
a,Ta có: a+b+c=0
<=>(a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>2+2(ab+bc+ca)=0
<=>ab+bc+ca=\(\frac{-2}{2}=-1\)
<=>(ab+bc+ca)2=1
<=>a2b2+b2c2+c2a2+2abc(a+b+c)=1
<=>a2b2+b2c2+c2a2=1 (vì a+b+c=0)
Lại có: a2+b2+c2=2
<=>(a2+b2+c2)2=4
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4
<=>a4+b4+c4+2=4 (vì a2b2+b2c2+c2a2=1)
<=>a4+b4+c4=2
b, tương tự a
1/
b, \(B=9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow B=\left(3x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1/3
Vậy Bmin = 1 khi x = 1/3
c,\(C=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow C=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...
d, \(D=2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow D=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...