\(\frac{a}{b}\) có 0 < a < b thì phân số bù với nó để thành...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

HD

phản chứng 

g/s a/(a+b) không tối giản => ước chung (d) của nó khác 1 

hãy c/m d <=1 => dpcm 

11 tháng 3 2017

rễ lắm

11 tháng 3 2017

làm sao làm sao, gấp lắm, sắp nộp rùi

4 tháng 4 2020

Giả sử \(\frac{a+b}{b}\) không là phân số tối giản

Gọi ƯCLN của a+b;a là d ( d khác 1 )

Khi đó:\(a+b⋮d;b⋮d\)

\(\Rightarrow\left(a+b\right)-b⋮d\)

\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )

Vậy ta có đpcm

19 tháng 2 2019

a) Không thể khẳng định \(\frac{a}{21}\)là phân số tối giản vì nếu \(a=3;a=7\)là số nguyên tố thì phân số chưa tối giản
\(\cdot a=3\Rightarrow\frac{3}{21}=\frac{1}{7}\)\(\cdot a=7\Rightarrow\frac{7}{21}=\frac{1}{3}\)
b) Để \(\frac{a}{21}\)là phân số tối giản thì \(a\ne3;7;21\). Mà \(a< 21\)nên \(S_a=\left(0;1;2;4;5;6;8;9;10;11;12;13;14;15;16;17;18;19;20\right)\)

6 tháng 4 2020

Gọi d là ƯCLN (a,a+b) và d thuộc N*

=> a+b chia hết cho d ; b chia hết cho d

=> a chia hết cho d ; b chia hết cho d 

Mà phân số a/b tối giản =>d = 1

=> ƯCLN(a,a+b)=1

=> Phân số a/a+b tối giản 

25 tháng 2 2024

Ta có

\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)

Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản

Vậy\(\dfrac{a+b}{b}\)là phân số tối giản

17 tháng 8 2016

Đầu tiên, cần chứng minh \(\frac{k}{k+1}\) là phân số tối giản với k là số tự nhiênThật vậy , gọi ƯCLN(k,k+1) = d (\(d\ge1\))

\(\begin{cases}k⋮d\\k+1⋮d\end{cases}\) => (k+1)-k\(⋮d\) => \(1⋮d\Rightarrow d\le1\)

Mà \(d\ge1\) => d = 1

Vậy \(\frac{k}{k+1}\) là phân số tối giản.

Áp dụng : Đặt \(k=\frac{a}{b}\) , khi đó ta có : \(\frac{1}{k}+1=\frac{b}{a}+1=\frac{a+b}{a}\Rightarrow\frac{a}{a+b}=\frac{k}{k+1}\) là p/s tối giản.

17 tháng 8 2016

Do a/b tối giản => ƯCLN (a,b) = 1

Mà \(\frac{a}{a+b}=\frac{1}{b}\) (do tính chất loại bỏ) 

Tử số là 1 => 1/b tối giản

Vậy a/a + b tối giản

10 tháng 4 2019

a, Giả sử \(\frac{a+b}{b}\)không tối giản thì tử và mẫu có ước chung \(d\ne\pm1\), suy ra \((a+b)⋮d;b⋮d(1)\)

\((a+b)⋮d\)nên \(\left[(a+b)-b\right]⋮d\), do đó \(a⋮d(2)\)

Từ 1 và 2 suy ra \(\frac{a}{b}\)không tối giản . Vậy : \(\frac{a+b}{b}\)là phân số tối giản

b, Giải thích tương tự như câu a nhé :v

10 tháng 4 2019

a)  Giả sử \(\frac{a+b}{b}\)không tối giản thì tủ và mẫu có ước chung d \(\ne\)+1 ,  -1  suy ra (a + b ) \(⋮\)d,b \(⋮\)d (1) Nên (a+b) - b \(⋮\)d , do đó a \(⋮\)d  (2)

Từ 1 và 2 ta có \(\frac{a}{b}\)không tối giản ( điều này trái với đầu bài)

Vậy \(\frac{a+b}{b}\)là phân số tối giản

b) Giải thích tương tự như câu a