Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N=\(\dfrac{2^{10}.13+2^9+130}{2^8.104}\)
N=\(\dfrac{13312+642}{26624}\)
N=\(\dfrac{3954}{26624}\)=\(\dfrac{6977}{13312}\)
\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^9.33+3^9.15}{3^9.2^4}\)
\(=\frac{3^9\left(33+15\right)}{3^9.2^4}=\frac{3^9.48}{3^9.16}\)
\(=\frac{48}{16}=3\)
\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{3^{10}.\left(11+5\right)}{3^9.8}\)
\(=\frac{3^{10}.16}{3^9.8}\)
\(=\frac{3.2}{1}\)
\(=6\)
<=> |x+2| = 13
<=> \(\orbr{\begin{cases}x+2=13\\x+2=-13\end{cases}\Rightarrow}\orbr{\begin{cases}x=11\\x=-15\end{cases}}\)
Vậy.........
hok tốt
..........
\(|x+2|=12+\left(-3\right)+\left|-4\right|\)
\(|x+2|=12-3+4\)
\(\left|x+2\right|=13\)
\(\Rightarrow x\in\left\{-15;11\right\}\)
\(A=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1
B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3
Vì ... bạn tự làm nha.nhớ k đấy
A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)
B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì 2010-1 > 2010-3
=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)
=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)
=> A < B
Vậy A < B
\(\left(3x-4\right)\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(3x-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-1\end{cases}}\)
Ta có : C = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 310 + 311
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)
= 40 + 34.40 + 38.40
= 40.(1 + 3 + 32 + 33)
= 10.4.(1 + 3 + 32 + 33) \(⋮\)10
=> \(C⋮10\left(\text{ĐPCM}\right)\)
\(N=\dfrac{3^{10}.11+3^9.15}{3^9.2^4}=\dfrac{3^9.33+3^9.15}{3^9.2^4}\)
\(=\dfrac{3^9\left(33+15\right)}{3^9.16}\)
\(=\dfrac{48}{16}=3\)