K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Hình này có 4 mặt bên

b) Diện tích của mỗi mặt bên là: \(4.5:2 = 10\) (\(c{m^2}\))

c) Diện tích của tất cả các mặt bên là: \(10.4 = 40\) (\(c{m^2}\))

d) Diện tích đáy là: \(4.4 = 16\) (\(c{m^2}\))

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

* Xét tam giác ABD cân tại A (vì AB = AD) ta có:

• \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = {40^o}\)

• \(\widehat A + \widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} = {180^o}\)

Suy ra \(\widehat A\)=180°−\(\widehat {AB{\rm{D}}}\)−\(\widehat {A{\rm{D}}B}\)=180°−40°−40°=100°

Ta có \(\widehat {A{\rm{D}}B} + \widehat {B{\rm{D}}C}\)=120° suy ra \(\widehat {B{\rm{D}}C}\)=120°−\(\widehat {A{\rm{D}}B}\)=120°−40°=80°.

* Xét tam giác BCD cân tại C (vì BC = CD) ta có:

• \(\widehat {CB{\rm{D}}} = \widehat {C{\rm{D}}B}\)=80°

• \(\widehat C + \widehat {CB{\rm{D}}} + \widehat {C{\rm{D}}B}\)=180°

Suy ra \(\widehat C\)=180°−\(\widehat {CB{\rm{D}}} - \widehat {C{\rm{D}}B}\)=180°−80°−80°=20°

Ta có: \(\widehat {ABC} = \widehat {AB{\rm{D}}} + \widehat {CB{\rm{D}}}\)=40°+80°=120o

Vậy số đo các góc của tứ giác ABCD là \(\widehat A = {100^o};\widehat {ABC} = {120^o};\widehat C = {20^o}\)

20 tháng 7 2023

a)

Xét tam giác ABC có MN//BC

`=>(AM)/MB=(AN)/(NC)` (định lí thales)

`=>(6,5)/x=4/2`

`=>x=3,25`

b)

có QH⊥PH (hình vẽ)

FE⊥PH (hình vẽ)

Suy ra EF//HQ (từ vuông góc đến song song)

Xét tam giác PHQ có EF//HQ (cmt)

`=>(PE)/(PH)=(PF)/(PQ)` (định lí thales)

`=>4/x=5/(5+3,5)`

`=>4/x=5/(8,5)`

`=>x=6,8`

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

a. Do H, K lần lượt là trung điểm cạnh DF, EF 

⇒ HK là đường trung bình của tam giác DEF.

⇒ DE = 2 HK = 2 \(\times\) 3 = 6.

b. Do M là trung điểm cạnh AB mà MN // AC (cùng vuông góc với AB)

⇒ MN là đường trung bình của tam giác ABC.

⇒ N là trung điểm của cạnh BC

⇒ y = NB = NC = 5.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;

AE = EC và E ∈ AC nên E là trung điểm của AC.

Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Tứ giác ABCD có: \(\widehat A = \widehat B = \widehat C = \widehat D = {90^o}\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

a) Thị phần xuất khẩu gạo của Thái Lan có xu thế giảm dần trong các năm từ 2017 đến 2020

b) Bảng thống kê thị phần xuất khẩu gạo của Việt Nam

    Năm

  2017  

  2018  

  2019  

  2020  

  Tỉ lệ (%)  

    12

    13

    15

   14

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Vì ABCD là hình bình hành nên: \(\widehat A = \widehat C;\widehat B = \widehat D\) ta có:

\(\begin{array}{l}\widehat A = \widehat C = {100^o}\\\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\\{100^o} + \widehat B + {100^o} + \widehat B = {360^o}\\2\widehat B + {200^o} = {360^o}\end{array}\)

Suy ra: \(2\widehat B = {360^o} - {200^o} = {160^o}\)

Do đó: \(\widehat B = {80^o}\) suy ra: \(\widehat B = \widehat D = {80^o}\)

Vậy các góc của hình bình hành ABCD là: \(\widehat A = {100^o};\widehat C = {100^o};\widehat B = {80^o};\widehat D = {80^o}\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a, Do ACDE là hình thang cân nên

AC//DE suy ra AB//ED \( \Rightarrow {{\widehat B} _1} = {{\widehat E} _3},{{\widehat A} _1} = {{\widehat E} _1} = {60^0};{{\widehat C} _1} = {{\widehat D} _1} = {60^0}\)

Mà: AE//BD \( \Rightarrow {{\widehat B} _2} = {{\widehat E} _2}\)

Xét \(\Delta ABE\) và \(\Delta B{\rm{D}}E\) có: \({{\widehat B} _1} = {{\widehat E} _3}\) ; BE chung

\(\begin{array}{l}{{{\widehat B} }_2} = {{{\widehat E} }_2} \Rightarrow \Delta ABE = \Delta B{\rm{D}}E \Rightarrow A{\rm{E}} = B{\rm{D}} = 2m.\\AB = E{\rm{D}} = 2m\end{array}\)

Xét \(\Delta BC{\rm{D}}\) có \({{\widehat C} _1} = {60^0};B{\rm{D}} = C{\rm{D}} = 2m \Rightarrow \Delta BC{\rm{D}}\) đều.

Xét \(\Delta A{\rm{E}}B\) có \({{\widehat A} _1} = {60^0};AB = A{\rm{E}} = 2m \Rightarrow \Delta A{\rm{E}}B\) đều.

Vì: \(\Delta A{\rm{E}}B\) đều suy ra: BE = 2 m.

Xét \(\Delta BE{\rm{D}}\) có BD = BE = ED = 2m \( \Rightarrow \Delta BE{\rm{D}}\) đều.

b, Vì \(\Delta ABE,\Delta BC{\rm{D}}\) là các tam giác đều nên AB = BC = 2m.

Suy ra AC = AB + BC = 4m.

Do \(\Delta B{\rm{D}}C\) đều nên H là trung điểm của BC.

Suy ra HC = HB =\(\dfrac{{BC}}{2} = 1\)

Xét \(\Delta DHC\) vuông tại H ta có:

\(D{C^2} = D{H^2} + H{C^2}\) (theo định lý pythagore)

\(\begin{array}{l} \Rightarrow D{H^2} = D{C^2} - H{C^2} = {2^2} - {1^2} = 3\\ \Rightarrow DH = \sqrt 3 \end{array}\)

c, Diện tích hình thang cân AEDC là:

\({S_{A{\rm{ED}}C}} = \dfrac{1}{2}DH.(AC + E{\rm{D}}) = \dfrac{1}{2}\sqrt 3 (2 + 4) = 3\sqrt 3 (c{m^2})\)

Vậy diện tích mặt cắt phần chứa nước: \(3\sqrt 3 c{m^2}\)