Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2020^{2019}+1\right)\left(2020^{2019}-1\right)=\left(2020^{2019}\right)^2-1=2020^{4038}-1\)
Ta có: 2020 = 1 mod 3
\(\Rightarrow2020^{2019}\equiv1mod3\)
\(\Rightarrow2020^{4038}-1\equiv0mod3\)
=> đpcm
\(A=2^{2015}+2^{2016}+2^{2017}+2^{2018}+2^{2019}+2^{2020}.\)
\(=2^{2014}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(=126.2^{2014}\)
\(=42.3.2^{2014}⋮42\)
C=2010-5-52-53-....-52020
=> C=2010-(5+52+53+....+52020)
Đặt D=5+52+53+....+52020
=> D chia hết cho 5 (1)
*) D=5+52+53+....+52020
=> D=(5+52)+(53+54)+.....+(52019+52020)
=> D=5(1+5)+53(1+5)+....+52019(1+5)
=> D=5.6+53.6+....+52019.6
=> D=6(5+53+....+52019)
=> D chia hết cho 6(2)
Từ (1) (2) => D chia hết cho 5.6=30
Ta có 6=2.3 và 2010 chia hết cho cả 2,3
=> C chia hết cho 30 (đpcm)
Ta có 5^2020+5^2019+5^2018 = 5^2018*(5^2+5^1+1)
=5^2018*31 chia hết cho 31.
\(5^{2020}+5^{2019}+5^{2018}\)
\(=5^{2018}.25+5^{2018}.5+5^{2018}\)
\(=5^{2018}.\left(25+5+1\right)=5^{2018}.31⋮31\)
Lưu ý :
\(\Rightarrow\)
Ai trả lời được sẽ được tặng 3 k !
Nhanh lên nha các bạn !
a, Ta có: \(M=7^{2019}+7^{2018}-7^{2017}.\)
\(=2017^{2017}\left(7^2+7-1\right)=55.2017^{2017}\)
\(=11.5.2017^{2017}⋮11\)
f,\(2P=2^2+2^3+2^4+...+2^{60}+2^{61}\)
\(2P-P=P=\left(2^2+2^3+2^4+...+2^{60}+2^{61}\right)-\left(2+2^2+2^3+...+2^{59}+2^{60}\right)\)
\(P=2^{61}-2\)
Em kiểm tra lại đề bài nhé. A không chia hết cho 6 đâu em nhé!
A chia hết cho 31.
Giải:
\(A=\left(5^2+5^3+5^4\right)+...+\left(5^{2018}+5^{2019}+5^{2020}\right)\)
\(=5^2\left(1+5+25\right)+...+5^{2018}\left(1+5+25\right)\)
\(=5^2.31+...+5^{2018}.31\)
\(=31\left(5^2+5^5+...+5^{2018}\right)\)chia hết cho 31