Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=\frac{144}{9}=16=2^4\)
\(\Leftrightarrow x=4\)
b) Cần thêm \(n\inℤ\)
Ta có : \(5n⋮n-3\)
\(\Leftrightarrow5\left(n-3\right)+15⋮n-3\)
\(\Leftrightarrow15⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(15\right)=\left\{-1,1,-3,3,-5,5,-15,15\right\}\)
\(\Leftrightarrow n\in\left\{2,4,0,6,-2,8,-12,18\right\}\)
1. 2x+3 + 2x = 144
2x . 8 + 2x = 144
2x . ( 8 + 1 ) = 144
2x . 9 = 144
2x =16
2x = 24
=> x = 4.
Vậy x = 4.
2. Tớ tìm n thuộc Z nhé!
- Vì n - 3 chia hết cho n - 3 => 5n - 15 chia hết cho n - 3.
=> Để 5n chia hết cho n - 3 thì 5n - 15 - 5n chia hết cho n - 3.
Hay -15 chia hêt cho n - 3.
Mà n thuộc Z nên n - 3 thuộc Z.
=> n - 3 là các ước nguyên của -15.
Các ước nguyên của -15 là : -1 ; -3 ; -5 ; -15 ; 1 ; 3 ; 5 ; 15.
Ta có bảng sau:
n-3 | -1 | -3 | -5 | -15 | 1 | 3 | 5 | 15 |
n | 2 | 0 | -2 | -12 | 4 | 6 | 8 | 18 |
Vậy..........
Có : S = (1+2)+(2^2+2^3)+.....+(2^98+2^99)
= 3+2^2.(1+2)+......+2^98.(1+2)
= 3+2^2.3+.....+2^98.3
= 3.(1+2^2+......+2^98) chia hết cho 3
=> S chia hết cho 3
Có : 2S = 2+2^2+....+2^100
S = 2S - S = (2+2^2+....+2^100)-(1+2+2^2+....+2^99) = 2^100 - 1
=> S+1 = 2^100-1+1 = 2^100 = (2^2)^50 = 4^50 = 4^48+2
=> ĐPCM
Tk mk nha
1.n+4 chai hết cho n+1
=>(n+1)+3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=>n+1 thuộc {1;3}
=>n thuộc {0;2}
Câu 1: 0 nha pn ( đúng chính xá lun ó)
Câu 2: n^2 +2006 là hợp số nha .....!!
1) \(-x-3=-2\left(x+7\right)\\ \Rightarrow-x-3=-2x-14\\ \Rightarrow-x+2x=-14+3\\ \Rightarrow x=-11\)
2) \(A=\frac{12}{\left(x+1\right)^2+3}\\ Tac\text{ó}:\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+3\ge3\\ \Rightarrow A\le\frac{12}{3}=4\)
Max A=4 khi x=-1
3) Đăt : \(n^2+4=k^2\\ \Rightarrow k^2-n^2=4\\ \Rightarrow\left(k-n\right)\left(k+n\right)=4\)
lập bang ra rồi tính
1) Ta có : n+5 chia hết n-2
=> n-2+7 chia hết n-2
=> 7 chia hết n-2
=> n-2\(\in\)Ư(7)=1;7;-1;-7
=>n=3;9;1;-5