Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây nha bạn: CMR: n^2+7n+22 không chia hết cho 9? | Yahoo Hỏi & Đáp
a) \(=2n^3-n^2+2n^2-n+8n-4+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)
vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok)
2n-1 | 1 | 5 |
n | 1 | 3 |
=> n thuộc (1;3)
b) \(n^3-2n^2+2n^2-4n+4n-8+6=\left(n-2\right)\left(n^2+2n+4\right)+6\)
vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8)
c) \(n^3+n^2+n-4n^2-4n-4+3=n\left(n^2+n+1\right)-4\left(n^2+n+1\right)+3=\left(n^2+n+1\right)\left(n-4\right)+3\)
vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=>
cái này xét trường hợp nha
n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại)
th2: \(n^2+n+1=3\Leftrightarrow n^2+n-2=0\Leftrightarrow n^2+2n-n-2=0\Leftrightarrow\left(n+2\right)\left(n-1\right)=0\)
=> n=-2(loại) hoặc n=1
\(n^3+n-n^2-1+n+8=\left(n^2+1\right)\left(n-1\right)+n+8\)nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
a) = 2n 3 − n 2 + 2n 2 − n + 8n − 4 + 5 = 2n − 1 n 2 + n + 4 + 5 vì (2n-1)(n^2+n+4) đã chia hết cho 2n-1 rồi => muốn biểu thức này chia hết cho 2n-1 => 5 phải chia hết cho 2n-1 <=> 2n-1 thuộc Ư(5) <=> 2n-1 thuộc (1;5) (chị k biết lớp 7 đã học đến số nguyên chưa, thôi thì ở đây cứ xét n thuộc N nha. nếu học rồi thì chỉ cần xét thêm các ước âm là ok) 2n-1 1 5 n 1 3 => n thuộc (1;3) b) n 3 − 2n 2 + 2n 2 − 4n + 4n − 8 + 6 = n − 2 n 2 + 2n + 4 + 6 vì.... (giải thích như câu a) => n-2 phải thuộc Ư(6) <=> n-2 thuộc (1;2;3;6) <=> (lập bảng như câu a) n thuộc (3;4;5;8) c) n 3 + n 2 + n − 4n 2 − 4n − 4 + 3 = n n 2 + n + 1 − 4 n 2 + n + 1 + 3 = n 2 + n + 1 n − 4 + 3 vì.... (giải thích như câu a) => n^2+n+1 phải thuộc Ư(3) <=>n^2+n+1 thuộc(1;3) <=> cái này xét trường hợp nha n^2+n+1 =1 <=> n(n+1)=0 <=> n=0(t/m ) hoặc n=-1(loại) th2: n 2 + n + 1 = 3⇔n 2 + n − 2 = 0⇔n 2 + 2n − n − 2 = 0⇔ n + 2 n − 1 = 0 => n=-2(loại) hoặc n=1 n 3 + n − n 2 − 1 + n + 8 = n 2 + 1 n − 1 + n + 8 nếu lấy đa thức này chia cho n^2+1 ta sẽ đc số dư là n+8 => để là phép chia hết thì n+8=0 <=> n=-8 (loại)
hơi rối một ít k cho mk nha
Giả sử n2+9n+24 chia hết cho 25
=> (n+3)2+15 chia hết cho 5
=> n+3 chia hết cho 5
=> (n+3)2 chia hết cho 25
=> (n+3)2+15 không chia hết cho 25 ( Vô lý)
=> giả sử sai
=> đccm
Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)
Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)
Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)
Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5
Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)
Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)
Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)
Có 72 chia hết 49. =>71992 chia hết 49 =>(7n)1992 chia hết 49 với mọi n thuộc N => đpcm
a: \(\Leftrightarrow10n^2+25n-16n-40+43⋮2n+5\)
\(\Leftrightarrow2n+5\in\left\{1;-1;43;-43\right\}\)
hay \(n\in\left\{-2;-3;19;-24\right\}\)
b: \(\Leftrightarrow7n^2+9n-4⋮3n+5\)
\(\Leftrightarrow21n^2+27n-12⋮3n+5\)
\(\Leftrightarrow21n^2+35n-8n-\dfrac{40}{3}+\dfrac{4}{3}⋮3n+5\)
\(\Leftrightarrow3n+5\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-2;-1;-3\right\}\)
Bài này dễ mà!
Ml đg bận ôn thi hộc nào rảnh mk lm cho !
Xin lỗi nhá !
Hì hì !
Mk sắp phải thi cuối kì 2 rồi !
Một lần nữa cho mk xin lỗi nha