
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

a: Vì n và n+1 là hai số liên tiếp
nên \(n\left(n+1\right)⋮2\)
b: Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
c: Vì n(n+1) chia hết cho 2
nên \(n\left(n+1\right)\left(2n+1\right)⋮2\)

\(a)\) Ta có :
\(n^2+3n-13=n\left(n+3\right)-13\) chia hết cho \(n+3\)
\(\Rightarrow\)\(-13\) chia hết cho \(n+3\)
\(\Rightarrow\)\(\left(n+2\right)\inƯ\left(-13\right)\)
Mà \(Ư\left(-13\right)=\left\{1;-1;13;-13\right\}\)
Suy ra :
\(n+3\) | \(1\) | \(-1\) | \(13\) | \(-13\) |
\(n\) | \(-2\) | \(-4\) | \(10\) | \(-16\) |
Vậy \(n\in\left\{-16;-4;-2;10\right\}\)
Chúc bạn học tốt ~

a: \(\Leftrightarrow n^2+n-3n-3+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
b: \(\Rightarrow n\left(n+2\right)+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: \(\Leftrightarrow n^2-1+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)

a.Ta có: n2 +n + 1
=n.(n+1) +1
Vì n+1 chia hết cho n+1 => n.(n+1) chia hết cho n+1
Để n.(n+1)+1 chia hết cho n+1 => 1 chia hết cho n+1.
=> n+1 thuộc Ư(1)
Mà n thuộc N => n=1
Vậy n=1.
a) Ta có : \(n^2+n+1=n\left(n+1\right)+1\)
\(\Rightarrow n^2+n+1⋮n+1\Leftrightarrow1⋮n+1\) ( vì \(n\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\) ( vì \(n\inℕ\))
\(\Rightarrow n=1-1=0\)
Vậy \(n=0\)
Làm tương tự với các câu còn lại.

Để mik sửa lại đề bài:
Sosánh tổng S = 1/2 + 2/22 + 3/23 + ... + n/2n +...+ 2007/22007 với 2. (n € N*)

làm mẫu một bài thôi nha
3n+2=3.(n-1)+5
hay 3(n-1)+5 phải chia hết cho n-1, mà 3(n-1) chia hết cho n-1, vậy 5 phải chia hết cho n-1, U(5)=1;5 =>n=2 hoặc n=6
\(A=\frac{n^2+1}{n}\) ∈ Z (n ≠ 0)
A ∈ Z ⇔ (n\(^2+1\)) ⋮ n
1 ⋮ n
n \(\in\) Ư(1) = {-1; 1}
Vậy A = \(\frac{n^2+1}{n}\) thuộc Z khi và chi khi n ∈ {-1; 1}