Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự hỏi rồi tự trả lời luôn, rảnh ha. -_-'
n là số nguyên tố lớn hơn 3=>n ko chia hết cho 3=>n^2 chia 3 dư 1
=>n^2=3k+1
=>n^2+2018=3k+1+2018=3k+2019 chia hết cho 3
=>n^2 là hợp số
a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)
\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )
Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2
=> a + n và a - n có cùng tính chẵn lẻ
TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )
TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1
Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương
b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))
TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3
=> \(n^2+2006\)là hợp số
Vậy \(n^2+2006\)là hợp số
a) Vi n2 + 2006 la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006 hay (n+a)x(n-a) = 2006
Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2
Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ
TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)
TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn
suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4
mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài
hợp số
Điều kiện: n nguyên tố > 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1
Mà 1004 chia 3 dư 2
=> A = n2 + 1004 chia hết cho 3
Mà 1 < 3 < A => A là hợp số