\(^2\) +2(m-1)x+m+4=0 Tìm m để

Pt có 2 nghiệm phân biệt x1.x2 thỏa x1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)

                                                                 \(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)

                                                                     \(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

4 tháng 12 2019

Áp dụng định lí viet ta có:

\(\hept{\begin{cases}x_1+x_2+x_3=5\\x_1x_2+x_2x_3+x_3x_1=2m+2\end{cases}}\)

Ta có: \(x_1^2+x_2^2+x_3^2=41\)

<=> \(\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)=41\)

<=> \(25-2\left(2m+2\right)=41\)

<=> \(m=-5.\)

20 tháng 3 2017

\(x^2-kx+k-1=0\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=k\\x_1x_2=k-1\end{matrix}\right.\)

Theo yêu cầu đề bài \(x^2_1x_2+x^2_2x_1=5\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=5\)

\(\Leftrightarrow\left(k-1\right)k=5\)

\(\Leftrightarrow k^2-k=5\)

\(\Leftrightarrow k^2-k-5=0\)

\(\Delta=b^2-4ac\)

\(\Delta=21\)

\(\Rightarrow\left\{{}\begin{matrix}k_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{1+\sqrt{21}}{2}\\k_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{1-\sqrt{21}}{2}\end{matrix}\right.\)

b)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2_1+x^2_2\ge2\sqrt{x^2_1x^2_2}=2\left|x_1x_2\right|\)

\(\Leftrightarrow x^2_1+x^2_2\ge2\left|k-1\right|\)

\(2\left|k-1\right|\ge0\)

\(\Rightarrow x^2_1+x^2_2\ge0\)

Vậy \(Min_{x^2_1+x^2_2}=0\) khi \(k=1\)