Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x+8)(x+6)-x^2=104
x^2+6x+8x+48-x^2=104
14x+48=104
14x=104-48
14x=56
x=4
(x+8)(x+6)-x2=104
<=> x2+6x+8x+48-x2=104
<=> 14x+48=104
<=> 14x=104-48
<=> 14x=56
<=> x= 56:14
<=> x=4
a) \(\left(x+8\right)\left(x+6\right)=104+x^2\Leftrightarrow x^2+6x+8x+48=104+x^2\)
\(\Leftrightarrow x^2+6x+8x-x^2=104-48\Leftrightarrow14x=56\Leftrightarrow x=\dfrac{56}{14}=4\)
vậy \(x=4\)
b) \(\left(x+1\right)\left(x+2\right)-\left(x-3\right)\left(x+4\right)=6\)
\(\Leftrightarrow x^2+2x+x+2-\left(x^2+4x-3x-12\right)=6\)
\(\Leftrightarrow x^2+2x+x+2-x^2-4x+3x+12=6\)
\(\Leftrightarrow2x+14=6\Leftrightarrow2x=6-14=-8\Leftrightarrow x=\dfrac{-8}{2}=-4\)
vậy \(x=-4\)
c) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-\left(4x^2-3x-4x+3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+3x+4x-3=5\)
\(\Leftrightarrow-13x-3=5\Leftrightarrow-13x=5+3=8\Leftrightarrow x=\dfrac{8}{-13}=\dfrac{-8}{13}\)
vậy \(x=\dfrac{-8}{13}\)
d) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Leftrightarrow3x^2-6x-4x+8=3x^2-27x-3\)
\(\Leftrightarrow3x^2-6x-4x-3x^2+27x=-3-8\)
\(\Leftrightarrow17x=-11\Leftrightarrow x=\dfrac{-11}{17}\) vậy \(x=\dfrac{-11}{17}\)
e) câu này đề bị thiếu rồi nha bn
f) \(5x\left(x-3\right)=\left(x-2\right)\left(5x-1\right)-5\)
\(\Leftrightarrow5x^2-15x=5x^2-x-10x+2-5\)
\(\Leftrightarrow5x^2-15x-5x^2+x+10x=2-5\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\dfrac{-3}{-4}=\dfrac{3}{4}\) vậy \(x=\dfrac{3}{4}\)
a) \(\left(x+8\right)\left(x+6\right)=104+x^2\)
\(\Leftrightarrow x^2+14x+48=104+x^2\)
\(\Leftrightarrow14x=56\)
\(\Rightarrow x=4\)
b) \(\left(x+1\right)\left(x+2\right)-\left(x-3\right)\left(x+4\right)=6\)
\(\Leftrightarrow x^2+3x+2-x^2-7x+12=6\)
\(\Leftrightarrow-4x=-8\)
\(\Rightarrow x=2\)
c) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+3x+4x-3=5\)
\(\Leftrightarrow-13x=8\)
\(\Rightarrow x=\dfrac{-8}{13}\)
d) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Leftrightarrow17x=-11\)
\(\Rightarrow x=\dfrac{-11}{17}\)
e) \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)
\(\Leftrightarrow-8x=-15\)
\(\Rightarrow x=\dfrac{15}{8}\)
f) \(5x\left(x-3\right)=\left(x-2\right)\left(5x-1\right)-5\)
\(\Leftrightarrow5x^2-15x=5x^2-11x+2-5\)
\(\Leftrightarrow-4x=-3\)
\(\Rightarrow x=\dfrac{3}{4}\)
Ta có :
\(7x^2-13x+6=0\)
=> \(7x^2-7x-13x+7x+6=0\)
=> \(7x\left(x-1\right)-6x+6=0\)
=>\(7x\left(x-1\right)-6\left(x-1\right)=0\)
=> \(\left(7x-6\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}7x-6=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{6}{7}\\x=1\end{matrix}\right.\)
Vậy x \(\in\)\(\left\{\dfrac{6}{7};1\right\}\)
\(7x^2-13x+6=0\Leftrightarrow7x^2-7x-6x+6=0\)
\(\Leftrightarrow7x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(7x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\7x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\7x=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=\dfrac{6}{7}\end{matrix}\right.\) vậy \(x=1;x=\dfrac{6}{7}\)
\(a,\left(x+8\right)\left(x+6\right)-x^2=104\)
\(\Rightarrow x^2+14x+48-x^2=104\)
\(\Rightarrow14x=56\)
\(\Rightarrow x=4\)
Vậy x=4
Đặt \(x^2+x+10=u\)
Phương trình trở thành: \(\frac{u-6}{2}+\frac{u-3}{3}=\frac{u+3}{5}+\frac{u+6}{6}\)
\(\Rightarrow\frac{u}{2}-3+\frac{u}{3}-1=\frac{u}{5}+\frac{3}{5}+\frac{u}{6}+1\)
\(\Rightarrow\frac{u}{2}+\frac{u}{3}-\frac{u}{5}-\frac{u}{6}=3+1+1+\frac{3}{5}\)
\(\Rightarrow u\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=\frac{28}{5}\)
\(\Rightarrow u.\frac{7}{15}=\frac{28}{5}\Rightarrow u=12\)
Lúc đó \(x^2+x+10=12\)
\(x^2+x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\)
1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
M=x(x-4)+13=x2-4x+13
=x2-4x+4+9
=(x-2)2+9\(\ge\)9(vì (x-2)2\(\ge\)0)
Dấu "=" xảy ra khi x-2 =0
<=>x=2
Vậy giá trị nhỏ nhất của M là 9 tại x=2
2) tìm giá trị lớn nhất của P = x(10-x) +6
P = x(10-x) +6=10x-x2+6=-x2+10x-25+31
=-(x2-10x+25)+31
=-(x-5)2+31\(\le\)31(vì -(x-5)2\(\le\)0)
Dấu = xảy ra khi x-5=0
<=>x=5
vậy giá trị lớn nhất của P là 31 tại x=5
M= x2-8x+12+13=x2-8x+25
Thay x=104 ta có M=10009
thiếu dấu bạn ơi