K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2024

Xét ΔCBD vuông tại C có CA là đường cao

nên \(CA^2=AB\cdot AD\)

=>\(AB=\dfrac{30^2}{20}=\dfrac{900}{20}=45\left(m\right)\)

Xét ΔABC vuông tại A có \(tanACB=\dfrac{AB}{AC}=\dfrac{45}{30}=\dfrac{3}{2}\)

nên \(\widehat{ACB}\simeq56^018'\)

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=16\)

hay AC=4cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có AB là đường cao ứng với cạnh huyền CD, ta được:

\(BA^2=AC\cdot AD\)

\(\Leftrightarrow AD=\dfrac{3^2}{4}=2.25\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=3.75^2\)

hay BD=3,75cm

c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AF là đường cao ứng với cạnh huyền BD, ta được:

\(BF\cdot BD=BA^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AE là đường cao ứng với cạnh huyền BC, ta được:

\(BE\cdot BC=BA^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(BF\cdot BD=BE\cdot BC\)

24 tháng 8 2016

Bạn ơi cho mình hỏi, từ B kẻ BC vuông góc với AD tại đâu vậy?

 

21 tháng 4 2018

Tương tự HS tự làm

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)