Một vật dao động điều hòa với tần số f = 2 Hz. Tại thời điểm t1, vật có động năng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Bài này có vẻ lẻ quá bạn.

\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)

Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)

\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)

\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)

M N O α α

Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.

\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)

Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)

21 tháng 7 2016

bạn ơi cho mình hỏi thời gian nhỏ nhất hay lớn nhất thì cách tính vẫn vậy hả?

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

15 tháng 6 2016

Hỏi đáp Vật lýchọn A

23 tháng 8 2016
W = \frac{1}{2}m \omega ^2 A^2 = \frac{1}{2}m \omega ^2 x^2 + \frac{1}{2}mv^2
Khi qua VTCB x = 0 \Rightarrow W = \frac{1}{2}mv^2
Đáp án đúng: C
1 tháng 10 2015

Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)

Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)

7 tháng 7 2016

Thế năng: \(W_t=\dfrac{1}{2}k.s^2\) (k là hệ số hồi phục, \(k=\dfrac{mg}{l}\))

Khi thế năng bằng 1 nửa cơ năng: \(W_t=\dfrac{W}{2}\)

\(\Rightarrow \dfrac{1}{2}k.s^2=\dfrac{1}{2}\dfrac{1}{2}k.S_0^2\)

\(\Rightarrow s = \pm\dfrac{\sqrt 2.S_0}{2}\)

Chọn C.

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

29 tháng 12 2014

\(W_L+W_C = W_{Cmax}\)

mà \(W_{d} = 2 W_t\) => \(W_{Cmax} = \frac{3}{2}W_C=> \frac{1}{2}CU_0^2 = \frac{3}{2}.\frac{1}{2}Cu^2.\)

=> \(u^2 = \frac{2}{3}U_0^2=> u = \pm \frac{2\sqrt{2}}{\sqrt{3}} \approx \pm 1,63 V.\)

Chọn đáp án \(D.1,63V.\)

29 tháng 12 2014

Bạn có thể áp dụng công thức tổng quát

\(W_C = nW_L => W = (1+\frac{1}{n})W_C\)

=> \(U_0^2 = \frac{n+1}{n}u^2\)

=> \(u = \pm \sqrt{\frac{n}{n+1}}U_0.\)