\(\pi\)t + x/4)(cm). Quảng đường và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2023

Để tính quảng đường và số lần vật qua vị trí x = -2cm trong khoảng thời gian từ t1 = 0.25s đến t2 = 2.125s, chúng ta cần tìm giá trị của t khi vị trí x bằng -2cm.

Theo phương trình x = 4cos(4πt + x/4), ta có: 4cos(4πt + x/4) = -2 cos(4πt + x/4) = -1/2

Để tìm giá trị của t, ta sử dụng hàm nghịch đảo của hàm cos: 4πt + x/4 = π + 2kπ hoặc 4πt + x/4 = 2π - 2kπ, với k là số nguyên.

Giải phương trình đầu tiên: 4πt + x/4 = π + 2kπ 4πt = π + 2kπ - x/4 t = (π + 2kπ - x/4) / (4π)

Giải phương trình thứ hai: 4πt + x/4 = 2π - 2kπ 4πt = 2π - 2kπ - x/4 t = (2π - 2kπ - x/4) / (4π)

Từ đây, ta có thể tính giá trị của t bằng cách thay x = -2cm, kết hợp với giá trị của k từ t1 đến t2:

t1 = (π + 2kπ + 2/4) / (4π) t2 = (2π - 2kπ + 2/4) / (4π)

Từ đó, ta tính được quảng đường vật đi được: S1 = 4cos(4πt1 + x/4) S2 = 4cos(4πt2 + x/4)

Vậy, quảng đường và số lần vật qua vị trí x = -2cm từ t1=0.25s đến t2=2.125s là S2 - S1 và số lần vật qua vị trí x = -2cm sẽ là số k thỏa mãn trong khoảng từ t1 đến t2

3 tháng 5 2018

Chọn B

+ Khi Wđ = 8Wt => x = ±A/3 = ±4/3 cm và T = 2s.

+ t1 = 1/6s => x1 = 0cm; t2 = 13/3 s => x2 = -2cm.

+ Ta thấy cứ 1T vật đi qua 2 vị trí x = ±4/3 cm tất cả 4 lần.

=> Sau 2T vật đi qua 8 lần.

Khi đó, vật ở vị trí x1 = 0cm (VTCB) đi tiếp lượng T/12 đến x2 = -2cm qua vị trí x = -4/3 cm một lần nữa. Ta có hình ảnh minh họa hình trên.

=> Tổng cộng vật đi qua vị trí động năng bằng 8 lần thế năng 9 lần.

18 tháng 8 2023

Để tính quãng đường vật đi được sau 0,25 s, ta có thể sử dụng phương trình dao động điều hòa x = A * cos(2π/T * t + φ), trong đó x là vị trí của vật (cm), A là biên độ của vật (cm), T là chu kỳ của dao động (s), t là thời gian (s), và φ là góc pha ban đầu (rad).

Trong trường hợp này, phương trình dao động là x = 4cos(4πt + π/4). Ta có thể nhận thấy rằng biên độ của vật là 4 cm và chu kỳ của dao động là T = 1/4 s.

Để tính quãng đường vật đi được sau 0,25 s, ta thay t = 0,25 vào phương trình:

x = 4cos(4π * 0,25 + π/4)

x = 4cos(π + π/4)

x = 4cos(5π/4)

x ≈ 4 * (-0,7071)

x ≈ -2,8284 cm

Vậy, quãng đường vật đi được sau 0,25 s kể từ khi bắt đầu chuyển động là khoảng -2,8284 cm.

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
30 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)

+ A = 4cm.

+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)

 
12 tháng 7 2023

Làm sao để từ hệ ptr 1 suy ra đc hệ ptr 2 ạ

20 tháng 8 2016

Biểu diễn dao động bằng véc tơ quay:

x 4 -4 -2 M N O 30°

Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.

Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)

Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)

\(\Rightarrow T=\dfrac{\pi}{10} (s)\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)

21 tháng 8 2016

tks nha

22 tháng 6 2019

ω=4π=>T=0,5s

\(\dfrac{t}{T}=\dfrac{5,75}{0,5}=11+0,5\)

t=0,5T=>α=π

khi t=0 có x0=2\(\sqrt{3}\) cm

Vẽ đường tròn thấy trong khoảng thời gian 0,5T vật không đi qua vị trí x=2 cm theo chiều dương lần nào cả

=> số lần vật đi qua vị trí x=2cm theo chiều dương trong 5,75s là 11 lần