Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì: T = 1s.
Thời gian: t = 2,4s = 2T + 0,4T.
+ Trong thời gian 2T quãng đường đi được là: S1 = 2.4A = 2.4.5 = 40cm.
+ Trong thời gian 0,4T véc tơ quay đã quay một góc 0,4. 360 = 1440
5 -5 -2,5 M1 M2 120 24
Quãng đường vật đã đi trong thời gian này: S2 = 2,5 + 5 + (5 - 5.cos240) = 7,9cm
Vậy tổng quãng đường vật đi: 40 + 7,9 = 47,9cm.
Từ phương trình ta thấy ban đầu vật đang ở biên độ âm (-5cm).
Do vậy để vật đi được quãng đường S=5cm kể từ thời điểm ban đầu, thì vật đi từ biên độ âm về vị trí cân bằng. Thời gian này bằng 1/4 chu kì dao động.
\(t=\dfrac{1}{4}.\dfrac{2\pi}{10\pi}=\dfrac{1}{20}s\)
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Yo anh, lâu lắm ko gặp :)
\(\omega=\frac{2\pi}{T}\Rightarrow T=\frac{2\pi}{4\pi}=\frac{1}{2}\left(s\right)\)
\(\Rightarrow\frac{\Delta t}{T}=\frac{0,375}{\frac{1}{2}}=\frac{3}{4}=0,75\)
Ta có: \(t_1=0\Rightarrow\left\{{}\begin{matrix}x_1=2,5\\v_1=-\omega.A.\sin\left(\omega t_1+\varphi\right)>0\end{matrix}\right.\) => chuyển động theo chiều âm
\(t_2=0,375\Rightarrow\left\{{}\begin{matrix}x_2=\frac{5\sqrt{3}}{2}\\v_2=-\omega A\sin\left(\omega t_2+\varphi\right)>0\end{matrix}\right.\) => chuyển động theo chiều dương
\(\Rightarrow S=2,5+5+5+\frac{5\sqrt{3}}{2}\approx16,8\left(cm\right)\)
Có gì thắc mắc hỏi em nha :)
Biểu diễn dao động bằng véc tơ quay:
x 4 -4 -2 M N O 30°
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
S=5cm= 4+1= T+T/6 = 7T/6( do cung ban đầu là 2pi/3, do A=1 nên T=4)
\(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\pi}=2\)
thời gian đi được = 7*2/6=7/3s.