Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để biên độ đạt giá trị cực đại thì hiện tượng cộng hưởng xảy ra, tần số ngoại lực bằng tần số dao động riêng của hệ.
Suy ra \(\omega=\omega_0=\sqrt{\dfrac{k}{m}}=5\pi(rad/s)\)
một chất điểm có khối lượng m=100g thực hiện dao động điều hòa . khi chất điểm ở cách vị trí cân bằng 4cm thì tốc độ của vật là 0.5m/s và lực kéo về tác dụng lên vật là 0.25N.biên độ dao động của chất điểm là
lm ntn hả b đáp án là 2can14 nhưng mk tính ra kq khác
Góc quét được từ t1 \(\rightarrow\) t2
\(\Delta\vartheta=2\pi+\frac{5}{6}\pi\)
\(\Rightarrow S=4X5+\frac{5}{2}+5=27,5\)
chọn C
Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\) Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)
chọn B
Hướng dẫn bạn:
- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)
\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)
- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)
Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.
Giải:
\(A=\sqrt{x^2+\left(\dfrac{\upsilon}{\omega}\right)^2}=5\left(cm\right)\)
\(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\left(\varphi\right)=0\\\upsilon=-\omega.A\sin\left(\varphi\right)< 0\end{matrix}\right.\) \(\Rightarrow\varphi=\dfrac{\pi}{2}\)
Vậy ta chọn \(C.5\cos\left(10t+\dfrac{\pi}{2}\right)cm\)
Câu 12. Một vật dao động điều hòa khi vật đi qua vị trí x = 3 cm vật đạt vận tốc 40 cm/s, biết rằng tần số góc của dao động là 10 rad/s. Viết phương trình dao động của vật? Biết gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều âm, gốc tọa độ tại vị trí cân bằng.
A. 3cos(10t + π/2) cm
B. 5cos(10t - π/2) cm
C. 5cos(10t + π/2) cm
D. 3cos(10t + π/2) cm