Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A C B D
Cm: a) Xét t/giác OAD và t/giác OCB
có: OA = OC (gt)
\(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)
OD = OB (gt)
=> t/giác OAD = t/giác OCD (c.g.c)
=> AD = BC (2 cạnh t/ứng)
Tương tự, xét t/giác AOB và t/giác COD
có: OA = OC (gt)
\(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)
OB = OD (gt)
=> t/giác AOB = t/giác COD (c.g.c)
=> AB = DC (2 cạnh t/ứng)
b) Xét t/giác ADC và t/giác CAB
có: AC : chung
AD = BC (cmt)
AB = DC (cmt)
=> t/giác ADC = t/giác CAB (c.c.c)
=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)
Xét t/giác ADB và t/giác CBD
có: AB = CD (cmt)
AD = CB (cmt)
BD : chung
=> t/giác ADB = t/giác CBD (c.c.c)
=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)
A B C x y
Có góc BAC = 180 - ( góc B + góc C ) = 180 - 80 = 100 độ
=> góc yAC = 180 - 100 = 80 độ
mà Ax là tia p/g ngoài góc A => yAx = xAC = yAC : 2 = 80 : 2 =40 độ
=>góc xAC = góc ACB = 40 độ
mà ở vị trí so le trong => Ax // BC
Ta có: góc CAy là góc ngoài của tam giác ABC
=>Góc CAy = góc B + góc C=40+40=80
mà Ax là tia phan giác của ngoài góc A
=>yAx=xAc=CAy:2=80:2=40 độ
Mà góc ACB=40 độ
=>xAc=ACB(=40 độ)
mà hai góc này nằm ở vị trí so le trong
=>Ax//BC
Ta có: B=A.2
=> B=45.2=90
Mà góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.
Nên: góc ngoải của C 90+35=135
Vậy góc ngoải của C =135 độ
Mình cũng đag thi
câu 1 chọn D
câu 2 chọn D
câu 3 chọn E tất cả đều đúng
câu 4 chọn B
Câu 1 : C
Câu 2 : D
Câu 3 : D
Câu 4 : B
Câu 5 : Giải :
A B M I A B M I a) b)
Chứng minh :
Xét 2 trường hợp :
- \(M \in AB\) (h.a) Vì MA = MB nên M là trung điểm của đoạn thẳng AB \(\Rightarrow\) M thuộc đường trung trực của đoạn thẳng AB.
- \(M\notin AB\) (h.b) : Kẻ đoạn thẳng nối M với trung điểm \(I\) của đoạn thẳng AB.
Ta có \(\triangle MAI=\triangle MBI\) (c.c.c) \(\Rightarrow\widehat{I_1}=\widehat{I_2}\). Mặt khác \(\widehat{I_1}+\widehat{I_2}=180^0\Rightarrow\widehat{I_1}=\widehat{I_2}=90^0\). Vậy \(MI\) là đường trung trực của đoạn thẳng AB.
a) Xét Δ ABD và Δ EBD có:
BA = BE (gt)
ABD = EBD (vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD= BED = 90o (2 góc tương ứng)
a,
xét tam giác ABD và EBD
BA = BE
ABD = DBC
BD chung
=> tam giác ABD = EBD ( c.g.c )
=> AD = ED ( 2 cạnh tương ứng )
b,
TA có tam giác ABD = EBD ( cmt )
=> BAD = BED ( 2 góc tương ứng )
mà A = 90 => BED = 90