Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai điểm có cùng biên độ 2 mm đối xứng nhau qua nút gần nhất và hai điểm có biên độ 3 mm nằm đồi xứng nhau qua bụng gần nhất. Áp dụng công thức tình biên độ điểm, ta có hệ phương trình:
Gọi biên độ sóng tại bụng là 2a.
Ta có : \(\frac{1}{a^2}=\frac{9}{4a^2}=1\rightarrow a=\frac{2}{\sqrt{13}}\)
Xét: \(2a\sin\frac{2\pi x}{\lambda}=2\rightarrow2\lambda=54cm\Rightarrow\lambda=27cm\)
Vậy chọn đáp án A.
Trong 1 chu kì , thời gian li độ của B có độ lớn hơn biên độ của C là T/3
=> Thời gian ngắn nhất để li độ điểm B đi từ biên độ đến vị trí li độ bằng điên độ tại C là T/12
\(\Rightarrow\Delta\varphi=\frac{2\pi d}{\lambda}=\frac{\pi}{6}\Rightarrow d=\frac{\lambda}{12}\)
\(u_M= 5\cos(4\pi t - 2 \pi \frac{d}{\lambda}) = 5\cos(4\pi t - 2 \pi \frac{50}{20})=5\cos(4\pi t - 5 \pi) cm.\)
Đây em nhé Câu hỏi của Nguyễn Thị Trúc Đào - Vật lý lớp 12 | Học trực tuyến
O u 3 a t M 2a
Điều kiện sóng dừng 2 đầu cố định: \(l=\frac{k\lambda}{2}\Rightarrow\lambda=l=\frac{v}{f}\Rightarrow f=\frac{v}{l}\)(Với k = 2, vì trên hình có 2 bụng).
Thời gian từ \(u=x\rightarrow u=-x\) (liên tiếp): \(5\Delta t-\Delta t=4\Delta t\)
Suy ra thời gian từ vị trí: \(u=x\rightarrow u=0\) là: \(\frac{4\Delta t}{2}=2\Delta t\)
Suy ra thời gian đi từ vị trí: \(u=2a\rightarrow u=0\) (biên về VTCB) là \(\Delta t+2\Delta t=3\Delta t=\frac{T}{4}\)
Chu kì dao động: \(T=4.3\Delta t=12\Delta t\)
Suy ra: \(A_M=x=2a.\frac{\sqrt{3}}{2}=a\sqrt{3}\) (dựa vào hình vẽ, cung \(\Delta t\) ứng với 300).
Dựa vào vòng tròn: \(V_M\) \(_{max}=a\sqrt{3}.\omega=a\sqrt{3}.2\pi f=2\pi\sqrt{3}\frac{va}{l}\)
Đáp án B
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
\(E=\frac{1}{2}\omega^2A^2\) nên vận tốc truyền sóng không ảnh hưởng.
chọn D
Gọi hình chiếu của điểm M trên AB là N, trung điểm của AB là O, đặt ON = x \(\Rightarrow\) \(AM=\sqrt{4+\left(4-x\right)^2}\)\(,BM=\sqrt{4+\left(4+x\right)^2}\)
\(\vartheta BM=\frac{2\pi BM}{\lambda}\)
\(\vartheta AM=\frac{2\pi AM}{\lambda}\)
\(\Rightarrow\frac{2\pi}{\lambda}\left(MB-MA\right)=\left(2k+1\right)\lambda\pi\)
Min khi k = 0 \(\Leftrightarrow\sqrt{4+\left(4+x\right)^2}-\sqrt{4+\left(4-x\right)^2}\)\(=1\Rightarrow x\approx0,56\left(cm\right)\)
chọn đáp án A
+ Vì B là điểm bụng thứ 2 tính từ A nên ta có: A B = 3 λ 4 = 30 ® λ = 40 cm
® T = λ v = 0 , 8 s
+ Biên độ dao động của điểm C là: A C = 2 a cos 2 π d λ + π 2 = 2 a cos 2 π . 20 3 40 + π 2 = a 3
+ cos α = O C O B = a 3 2 a = 3 2 ® α = π 6
® Khoảng thời gian ngắn nhất mà 2 lần ly độ tại B bằng biên độ tại C là:
ω t = 2 π T t = 2. π 6 ® t = T 6 = 2 15 s
ü Đáp án C